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Variance modelling of longitudinal height data
from a Pinus radiata progeny test

Luis A. Apiolaza, Arthur R. Gilmour, and Dorian J. Garrick

Abstract: Variance components were estimated using alternative structures for the additive genetic covariance matrix
(Gyp), for height (m) of trees measured at 10 unequally spaced ages in an open-pollinated progeny test. These structures
reflected unstructured, autoregressive, banded correlation and random regressions models. The residuBbmadisx (
unstructured, and the block and plot strata matrices were autoregressive. The best m@jetdosidering the likehi

hood value and number of parameters was the autoregressive correlation form with age-specific variances and time on
a natural logarithm basis. The genetic correlation between successive measures ranged from 0.93 at age 1 to 0.99 at
age 14 years. Heritability increased with age from 0.09 (age 1) to 0.24 (age 7) and then declined to 0.13 at age 15.
Heritabilities from the unstructured model were similar, while heritabilities assuming banded correlations were lower
after age 7. The covariance structure implicit in the random regressions model was considered unsatisfactory. Using
structures inG, facilitated model fitting and convergence of the likelihood maximisation algorithm. Fitting a structured
matrix that reflects the relationships present in repeated measures may overcome problems of nonpositive definiteness
of unstructured matrices from longitudinal data, especially when genetic variation is small.

Résumé: Les auteurs ont estimé les composantes de la variance a I'aide de structures d’ajustement a la matrice de co
variances génétiques additiveSy] pour la hauteur (m) d’arbres mesurés a 10 intervalles non réguliers au sein d’'un

test de descendances issues de pollinisation libre. Ces structures reflétaient des modeles non structurés, auto-régressifs,
par corrélations stratifiées et par régressions aléatoires. La matrice résidgliedtait pas structurée, et les matrices

a I'échelle des blocs et des parcelles étaient auto-régressives. En considérant la valeur de maximum de vraisemblance
et le nombre de parametres, le meilleur modéle d’ajusteme@ détait celui des corrélations auto-régressives avec les
variances spécifiques a chaque age et le temps suivant I'échelle logarithmique naturelle. Les corrélations génétiques
entre les mesures successives variaient d8 8,2 an gsqu’a 0,99 a 14 ans. L’héritabilité augmentait avec I'age, allant

de 0,09 (a 1 an) a 0,24 (a 7 ans) pour décroitre a 0,13 a 15 ans. Les héritabilités découlant du modéle non structuré
étaient similaires, alors que les héritabilités découlant du modéle par corrélations stratifiées étaient plus faibles aprées

7 ans. La structure de covariances implicite au modéle de régressions aléatoires n'a pas été jugée satisfaisante. La
structuration deG, a facilité I'ajustement des modéles ainsi que la convergence de I'algorithme de maximisation de la
vraisemblance. Les auteurs en concluent que I'ajustement d’'une matrice structurée réflétant les liens de dépendance
parmi les mesures répétées peut permettre de résoudre les problemes de manque de d’exactitude présents-dans les ma
trices non structurées découlant de données longitudinales, spécialement lorsque la variabilité génétique est faible.

[Traduit par la Rédaction]

Introduction netic and economic information. Selection in tree breeding

The success of tree breeding programmes relies on theﬁt
ability to identify and deploy superior trees, progressively
increasing profit. Decisions on how, when, and what to se
lect are made (or should be made) taking into account g

rogrammes is based upon genetic information generated
om progeny tests.

The net present value of genetic gain depends on the total
genetic gain AG) and the time when improved material is
edeployed and costd ] are incurred (Newman and Williams

1991). BothAG andL contain constraints and opportunities
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time. Understanding the genetics of development allows delarge number of poorly estimated parameters and may be
termination of the optimum evaluation time(s) for fine- considered an overparameterization (Hand and Crowder
tuning breeding programmes and the use of multiple asses§996). That is, there may not be enough information in the
ments for genetic evaluations. One of the features of longitudata to estimate each variance and covariance with sufficient
dinal data is the covariance that exists between observatiorsccuracy for the resulting matrix to be coherent (positive
of the same individual (Diggle et al. 1994; Hand and Crowderdefinite), and the likelihood maximization algorithm may
1996). Covariance matrices typically contain pattern oreven fail to converge. This is less a problem with some
structure, which can be modelled with a reduced number o$tructured matrices, making appealing the assumption of
parameters. Diggle et al. (1994) identify three sources ofmore parsimonious covariance structures asreases.
variation in longitudinal data: serial correlations, random ef ~Some researchers have recognized the need for structured
fects, and measurement error. These act simultaneously. covariance matrices, yet only in isolated cases. For example
Previous researchers in tree breeding have used sevel@laas et al. (1984, p. 34) proposed the use of an autoregres
variance models for longitudinal data. Early studies usedsive error structure in a repeatability model, relaxing the
univariate analysis at each age, sometimes fitting a curvequal correlation assumption. Kremer (1992) explicitly recog
through the estimates to smooth and interpolate the resultsized the role of error serial correlation for the analysis of
(e.g., Foster 1986). This procedure may produce unbiaseaeight increments. Coelli et al. (1998) compared several dif
estimates of heritability in absence of selection but ignoregerent structures for the multivariate analysis of additive ge
the dependence (covariance) between times. Other studiestic effects of repeated measures in a sheep breeding context.
used bivariate analyses of each pair of times (e.g., Balocchi An alternative approach for modelling covariance struc
et al. 1993), increasing the understanding of the associatiotures, regression models with random coefficients, was-ntro
between measures. Another procedure uses the correlatiodsced by Rao (1965) in the context of growth models. Laird
between family means of the same genetic material grown a&nd Ware (1982) generalized the theory to include mixed
different sites, i.e., based on type B correlation (Burdonmodels, with fixed parameters at the population level and
1977; see Hodge and White 1992 for an extensive applicarandom parameters at the individual level. Under this frame
tion), with the intention of avoiding error correlation be- work, unbalanced and incomplete data sets are readily handled,
tween the measures. and the correlation among successive measures is implicitly
Longitudinal analyses are more efficient using all avail-modelled by the random regressions (Louis 1988; Vonesh
able information, especially when missing observations are and Chinchilli 1997). Schaeffer and Dekkers (1994), Jam-
problem. Progeny tests, as other long-term forestry expericozik and Schaeffer (1997), and Jamrozik et al. (1997) ap-
ments, do not maintain the original design. Even when a tegtlied random regression models to the analysis of lactation
starts as a balanced experiment, mortality generates temporgcords, while Gregoire et al. (1995) advocated the use of
imbalance; hence, early measures contain more records thaandom regressions to model growth in permanent plots in
later ones (Gregoire et al. 1995). Some authors choose ferest mensuration. The use of random regressions in these
eliminate temporal unbalance, keeping only individuals withstudies allowed for individuals with heterogeneous ages to
a full history of measures (e.g., Balocchi et al. 1993), butbe included in the analyses, and a reduction of computa-
this approach omits useful data and does not consider th&ipnal requirements compared with unstructured multivariate
biases may arise if mortality is not random. analyses. Random regression models directly define covari
There are recent attempts with forest trees to use twe corfnce functions that are the continuous (infinitesimal) equiva
trasting models for genetic correlation: a repeatability {uni lent of a covariance matrix for a given trait and fixed ages
variate) model (e.g., Wei and Borralho 1996) and a full(Kirkpatrick et al. 1990, 1994). These functions permit us to
multivariate model (e.g., Wei and Borralho 1998). The re calculate the covariance between any two ages, as can also
peatability model assumes that all measures represent tf¢ done with the distance-based autocorrelation model. So,
same trait. This implies a genetic correlation of one betweehe association among measurements may be modeHed ei
all pairs of records, equal variance for all records and equdher through random regressions or through specification of
environmental correlation between all pairs of records. Theésovariance structures. In some cases both methods are used
model can be represented B = 02J andR = o2(l + rJ) together (e.g., Chi and Reinsel 1989; Jones 1990).
wherel is the identity matrix,J is a square matrix with all  In this paper we model longitudinal data from a progeny
elements equal to B2 is the additive genetic variance com test. We compare estimated genetic parameters obtained
ponent,o? is the error variance component andl + r) is from traditional approaches with those from various vari
the correlation between residuals. With height increasingnce models under the general mixed model. First, we-intro
with age over many years, the equal variance and genetﬁuce the general model in a tree breeding context. Then we
correlation assumptions are often unrealistic, although varianderesent alternative structures for the additive genetic
heterogeneity may be Crude|y removed through standardizg&ovariance matrix. Finally, we discuss opportunities and lim
tion. In contrast, the full multivariate model considers eachitations for the use of these models.
age as the realization of a different trait. It was originally ap
plied to balanced and complete data, but modern computingaterials and methods
techniques allow its application to incomplete data sets.
Unstructured covariance matrices in a full multivariate Data set
analysis are feasible and reasonable with a small number, The forestry company Bosques Arauco S.A. established
of successive measures. However, since these matrices hawviel FA8102 in the VIII Regién of Chile in 1981 to preg
t(t — 1)/2 covariance components, more measures implies any test 45 radiata pineP{nhus radiataDonn ex D. Don)
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Table 1. Summary statistics by age. oy, O im0
No. of Percentage g 0 B

Age individuals of trees Height (m) [2] [p O~ MND 00

1 1522 88.4 0.48 (0.12) a o U

2 1525 88.6 1.00 (0.22) '0 O

4 1525 88.6 2.98 (0.60) &0 0D

5 1524 88.6 4.60 (0.85)

6 1511 87.8 6.45 (1.02)

7 1515 88.0 8.43 (1.11) o Vi, ZgBo ZpPo Z1Go R

8 1510 87.7 10.43 (1.22) %OZB‘ Bo 0 0 0

9 1505 87.4 12.11 (1.36) (PyZp 0 Py 0 0
12 1351 78.5 17.97 (1.79) Z'I 0 0 G 0
15 1284 74.6 22.34 (2.46) 0T, 0

Note: Values for height are means, with SD given in H Ro 0 0 0 Ro

parentheses. The percentage of trees refers to the
individuals included in the analyses relative to the number

initially established (1721, without considering controls and whereBy, Po, Go, andR, are the block, plot, additive genetic,
fillers) discounting natural mortality, mechanical damage and _re&dqal covariance matrices, respectively, Grgla null )
and inconsistent measures. matrix (with all elements equal to 0). The corresponding

characteristic elements (for measujeand k) ared, ,0p
) ] . . ) 0, ando. . The number of observations per individual may
0pen—p0||lnated f|rst'generat|0n Se|eCtI0nS W|th 9 Controls.valrl'(y in Whi"((:h case the Corresponding rows and COlUmrBoof

These were planted in five-tree plots within eight random gre deleted. Finally, the phenotypic covariance matrix is
ized complete blocks, a total of 2160 trees. Control plots

were plar_1ted with mixed see(_i of unknown pedigree and havgs] Vi =ZgBZpg +ZpPLRr tZ £ & TR o
been omitted from the analysis. Trees that were suppressed by
early competition never reached 5 cm diameter at breast Extending the model equation to tihesubjects of a prog-
height (DBH) and were also omitted. Consequently, a total okny test we obtain
1526 trees in 353 plots were included in the analysis, each
tree being from seed collected from one of 45 mother trees. [4] y=Xm+Zgb+Zp+Zsa+e

The trees were assessed for height at 1, 2, 4, 5, 6, 7, 8, 9,
12, and 15 years of age. In the case of trees with mechanic&ry = (y1, Y2, ...y, a= (aj, as, ..., ay)’, e = (e, €, ...,
damage (as those broken by wind at age 12), observatior&), X = (X3, X5, ..., Xp)', Zg = (Zg,, Zg,, .-+ Zg,) s Zp =
after the damage occurred were eliminated. Summary stati€¢Zp , Zp,, ..., Zp ), andZy = 2 Z¢ . Hence, in the disper-
tics by age are presented in Table 1. Small fluctuations ogion matrixB = 4By, P = Z5P;,, G = A G, andR =
the number of trees between ages 1-2 and 6-7 are caused byRo, whereA,, is the numerator relationship matri;, de-
the elimination of inconsistent assessments. It is only after ®otes direct sum, and represents direct product operation
years that there is appreciable mortality among the tree{Searle 1982). Since the genetic relationships in our study
The regression of log(standard deviation) on log(mear@re limited to half-sib information, it is possible to fit the
height) has a slope of 0.74 + 0.03 suggesting that a powegquivalent half-sib (“sire”) model with family rather than
transformation of the data to hei§if would stabilize the tree as the random factor. We keep the tree model notation
variance (Box and Cox 1964). However, we will analyse thefor the sake of generality.
data on the measurement scale using models with heteroge
neous variances to account for the increase of variance witparameterizations of the model

age. The expected value of; is Xim (eq. 2). This is used to
model the average performance of trees as fixed effects and,
General linear mixed model in this case, is the mean at each age. From eq. 3, the depend

An individual tree (“animal”) linear mixed-effects model ence of the variance of on the specification 0B, Py, Gy,

equation for longitudinal data of treecan be expressed as andR, is clear. Since our main interest in the analysiSig
- thus following Coelli et al. (1998), we will fit an unstruc

(11 yi=Xim +Zgh +Zpp +Z1a; *e; tured error C(g)variance matr$>R()) v?/hile examining various
wherey; is the vector of5 observations for the individualin  forms for the additive genetic covariance matrix. For the
dexed by agem is the vector of fixed effects (which may block (By) covariance matrix we use an autoregressive cor
include regression coefficients at population level)is the  relation structure with separate variances at each time, be
vector of random block by age effectsjs the vector of ran  cause it matches our general expectation that the correlation
dom plot by age effectsy, is the vector of individual ran  would reduce as the time interval increases. Since there are
dom additive genetic effects, amis the vector of random only eight blocks, an unstructured form fBf would be sin
residuals.X;, Zg , Zp, andZy are incidence matrices refat gular and not estimable. For the pld®f matrix we will
ing m, b, p, anda, toy;. Thus the expected value and disper primarily use a similar autoregressive correlation structure
sion matrices assuming a multivariate normal distributionwith heterogeneous variance but will also report some re
(MND) are sults from fitting an unstructured form.

© 2000 NRC Canada



648 Can. J. For. Res. Vol. 30, 2000

Fig. 1. Covariance structures fitted in this study (example using only four ages or measures). Different detberstg.) represent dif
ferent values of correlation. US, unstructured; BC, banded correlations; AR, autoregr&\lssi\@g(e at measuremejj)t RR, random
regressions expressed as the proddet,Q; (z; is theith orthogonal polynomial vector evaluated at gyeUC, uncorrelated. See text
for more detail in the explanation.

1

a b ¢ 1 a b ¢ 1 a|t2‘t|| a|‘3—‘l| a|t4"1|
a 1 d e a l a b a!‘z“l| 1 8'|‘3*‘z| a|t4—tz|
b d 1l f b a l a a[‘n‘t|| a|‘3“z| 1 a|t4—t3]
c e f 1 ¢c b a1 af‘r‘l| a‘tr‘2| a|‘4“3| 1
us BC AR
Zoy Zy Zy Zy ||l a b ocllzy Zy, Zg Zgy 1000
Zp Zy, Zy Zyplla 1 d oellz, z, z,; 2z, 0100
Zoy Ziy Zyy Zy ||bd 1 f1zy zy zy 2y 0010
Zo Zy Zy ZylC e T 1]|zy zy, zy zy 0001
RR ucC

We examine the following forms for the additive genetic information algorithm (Gilmour et al. 1995) implemented in
covarianceG, (examples of the structures are displayed inASReml (Gilmour et al. 1998).
Fig. 1):
P : Model selection
(1) Full multivariate model (US). Her&, is an unstruc Adding variance parameters to a model may result in a

@) g;igergfgrrélation model (BC) with heterogeneous varipetter fit and hence increase the likelihood value. Several

ances. Her&, = SCycS, whereS is diagonal matrix of criteria may be used to judge whether additional parameters
. 0~ C

the square roots of the genetic variance components e mak_ing an important contribution to t_he fit. Th.e IikeI_i- .
each age an@. is a banded correlation matrix with a ood ratio test formally tests whether the increase is statisti-

i . ; : cally significant. Akaike's information criterion and
specific correlation for each particular age interval. I . o . : )
: : . Bayesian information criterion (Akaike 1974; Jones 1993;

©) A“toregéesz"e_ rggde's (AE) WS'”? hete[)oge”eogs Vall Carlin and Louis 1996) penalize the likelihood by the num
ﬁggez'n ;L:tor(zaéres gi?/e, Zvor?é?ati!asna:tﬁjc?tjlr?eaT/VgRuse ber of independently fitted parameters used in the model.

. . ; ased on previous experiences in genetic analyses (Wada
power formulation (Diggle et al. 1994) which allows and Kashiwagi 1990) we will use Akaike’s criterion (AIC),

for the unequal age intervals, and compare smeOdQI\ﬁlhich penalizes likelihood values in such a way that any ex

i - ; O
where the age is expressed on the natug™ tra parameter must increase the likelihood by at least one

k=i N : ; i
ARnat), square roo&(ﬁ *ﬁ‘, ARsqr), and logarithmic unit to be included in the model:
(pllegtk)-1og()I = plleak/i)l- ARIog) scales, whergis a cor _
relation coefficient and andk are the two ages. Note AIC 2Logl +2p
that when lag (age interval) is expressed in a logarithwhere —2 LogL is twice the negative log-likelihood value
mic scale the correlation depends upon an age ratio. for the model ang is the number of estimated parameters.

(4) Random regression model (RR) using orthogonal poly Smaller values of AIC reflect an overall better fit.
nomials. HereG, = QARQ;, where/\q is the random

regressors covariance matrix aQghasq + 1 columns  Genetic parameters

containingz, z, z, ..., ZT respectively, where is the Estimates of heritabilityt?) at agej and genetic correta
a

polynomial vector. Additionallya, = Q;A;, whereA,; is

the vector of random regression coefficients. - 65
(5) Lastly, an uncorrelated model (UC) (for estimating hft = — A A x
heritabilities only) is fitted, which is equivalent to a {ra a b R §
ditional univariate analysis by age. Here all covariances
in Gy (as well as inRy) are zero. Oa,
All models are fitted by restricted maximum likelihood ]
(REML; Patterson and Thompson 1971) using the average g &

© 2000 NRC Canada
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Fig. 2. Box plot of height versus age. The midpoint, box, and whiskers represent the mean, mean = SD, and minimum—-maximum,
respectively. A cubic polynomial-(:-) is fitted to the data.

30 T : T T : T r . r r . T r :

N e

15 ¢

Height (m)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Age (years)

Table 2. Comparison of multivariate models.

No. of parameters Log
Model (Bg + Pg + Gg + Ry) likelihood AlIC?
AutoregressiveP,: base model 11 +1+ 0+ 55 =77 7062.51 -13971.02
Full multivariate (USY§ 11 + 11 + 55 + 55 = 132 7098.87 -13933.74
Banded correlations (BC) 11 +11 +21 +55 =098 7074.94 -13953.88
Autoregressive (ARnat — age) 11 +11 + 11 + 55 =88 7067.04 -13958.08
Autoregressive (ARsqr V’aT;e) 11 +11 + 11 + 55 =88 7067.85 -13959.70
Autoregressive (ARlog — log(agé)) 11 +11 +11 +55 =88 7068.60 -13961.20
Random regression (RR) 11 + 11 + 10 + 55 = 87 7078.29 —-13982.58
UnstructuredP,: base model 11 +%+ 0 +55 =121 7124.78 —14 007.56
Full multivariate (US§ 11 + 55 + 55 + 55 = 176 7153.17 —13954.34
Autoregressive (ARlog — log(age)) 11 + 55 + 11 + 55 = 132 7127.84 -13991.68
Uncorrelated (UC) 10 + 10 + 10 + 10 = 40 -3418.23 6 916.46

#AIC = -2 x log likelihoad + 2 x number of parameters.

G, is nonpositive definite; log likelihood reduces to 6854.05 after bending.

“Best model includings, and considering autoregressig.

“Reduced rank version: the model converged only by fixing the variance for the quadratic component.
G, is nonpositive definite.

‘Best model including3, and considering unstructure®y.

using the appropriate variance and covariance estimate®al data for growth. It also reveals that the distribution of
from G, By, Py, andR,. Standard errors of the estimates areheights at particular ages is not symmetric after year 5. This
calculated by ASReml from the average information matrix,asymmetry would be aggravated if a variance stabilizing
using a standard Taylor series approximation (Gilmour et altransformation was applied to the data. The figure suggests

1998). that a cubic polynomial (broken line) is a reasonable model
to form the basis for modelling genetic effects as random

Results and discussion regressions.

Exploratory analysis Variance models

Figure 2 shows a box plot of height versus age. The-mid The log-likelihood values for a range of models are in
point, box, and whiskers represent the mean, mean + SDfable 2. They range from —-3418.2 for the UC model to
and minimum—-maximum, respectively. This plot depicts an7098.9 (7153.2) for the US model with autoregressive- (un
increase of variance with time, which is typical of longitudi structured) plot error structure. Using AIC, the best model
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Table 3. Variance parameters estimated from the autoregressive (ARlog) model with autoregressive plot errom?plquit((p?), additive genetictf), and residualsef) vari-

ances expressed as proportion of phenotypic variaﬁ%}z &nd correlations among residuals (below diagonal) and genetic correlations (above diagonal).

Correlation at age

Variance parameters

b2

15

0.776

12

h2

Age
1
2
4
5
6
7
8
9

12

15

0.759
0.814

0.799
0.858

0.868 0.849 0.833 0.820 0.809
0.932

0.932

0.016

0.680
0.658
0.596
0.620

0.091

0.180
0.193
0.178
0.162
0.166
0.141

0.049

0.833
0.894

0.868
0.915

0.880
0.945

0.894
0.966

0.911

0.697

0.051

0.082

0.068

0.874
0.894

0.911

0.921

0.932

0.960
0.982

0.978

0.758
0.683
0.627

0.607
0.560
0.501

0.380
0.754
1.108
1.309
1.573
2.016

0.170
0.168
0.209
0.238
0.228

0.057

0.942
0.960

0.953

0.836

0.050
0.057

0.932

0.971

0.984

0.887

0.786

0.568
0.561

0.975 0.947 0.925

0.987

0.581 0.731 0.831 0.916

0.469

0.060

0.938
0.949
0.978

0.960
0.971

0.988

0.901
0.882
0.779
0.770

0.855
0.820
0.719

0.763
0.714
0.620

0.528 0.675

0.419

0.606
0.653
0.737
0.849

0.125
0.095
0.067

0.040
0.055
0.026

0.890
0.812

0.492 0.633

0.399

0.197
0.171

0.832

0.361 0.412 0.533

3.399

0.820 0.898

0.811

0.362 0.414 0.529 0.611 0.708

6.959

0.015 0.129

0.006
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(i.e., the one with the lowest value) for both plot error
structures is the base model, i.e., the one with no tree effects
fitted. Of those with tree effects fitted, the best is the ARlog
structure having age on a natural logarithm basis with AIC =
—-13961.2. It is followed by the ARsqr, the ARnat, the BC,
and the US models (Table 2). The RR model is considered
later. The ARnat and ARsqr models have slightly lower
heritabilities and slightly higher genetic correlations than the
ARlog model, and so their parameters are not included in
Figs. 3 and 4. In the following discussion we refer to models
fitted with an AR plot variance, since not all models would
converge to positive definite solution when fitted with a US
plot variance model. The genetic parameters with AR plot
variance were not much different from those with US plot
variance.

The proportions by age for all variance components in the
ARlog model are in Table 3. Plot variances are the largest
component (18%) in the early years slowly declining in rela
tive magnitude about 1% per year. The early plot variation
might reflect carry-over effects from the nursery. The block
variance component is around 5% before declining after age
9. The residual variance is stable at around 60% of pheno
typic variance until age 9 increasing to 85% at age 15.

Heritability estimates under the ARlog model (Table 3)
increase with age from 0.091 at age 1 to 0.238 at age 7 and
then decline to 0.129 at age 15. The BC model gave higher
heritability before age 8 and lower heritability for later mea-
surements (Fig. 3). However, compared with the ARlog
model, an increase in the likelihood of 6.3 with 10 extra pa-
rameters indicates that the model does not fit the data signif-
icantly (P > 0.05) better. Heritabilities from the US and UC
models are very similar to the values from the ARlog model,
reaching a maximum of 0.241 and 0.224, respectively
(Fig. 3). The figure also includes the asymptotic estimate of
the standard error of the heritability from the ARlog model.
There is little difference in the standard error of the
heritability estimates from the AR (with any time scale),
BC, US, and UC models.

The heritability differences among these models are quite
small until age 6, when the BC model starts underestimating
later values. The benefits of a multivariate versus a uni
variate approach are clearer when covering traits with large
differences between genetic and residual correlations; con
trasting heritabilities (Thompson and Meyer 1986) or there
are many missing values for some traits, especially if not
missing at random. Here however, the correlations are
mostly high, all heritabilities are moderate and only 16% of
trees have missing values, particularly at ages 12 and 15.

Figure 4 shows the values of genetic correlation plotted
against lag for the ARlog, BC, and US models. The simple
regressions of the correlations on lag shown in Fig. 4 Rad
coefficients of 0.58, 0.97, and 0.53 for ARlog, BC, and US,
respectively. The correlation between successive ages under
the ARlog model increased from 0.932 at age 1 to 0.993 at
14 years of age. The BC model has a single value for each
lag whereas the ARlog and US models have several values
for each lag, although the ARnat model has a single value
per lag.

The US estimates o6, were both nonpositive definite
and with some correlations above 1 (Fig. 4). Such a solution
is not easily used in practice but commonly occurs because
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Fig. 3. Heritability estimates based on fitting the unstructured (US;—), banded correlation (BC:-e---), autoregressive
(ARlog; --A---), random regressions (RR; &—), and uncorrelated (UC; ---+---) models considering autoregressive plot errors, and
standard error of the heritability for the autoregressive:{ model.
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Fig. 4. Genetic correlations for different lags between measures for unstructured (US;)—banded correlations (BC:-e--), and
autoregressive (ARlog; A—) models considering autoregressive plot errors.
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of sampling variation when there are small numbers of fami model agree better with the US model values than do the
lies. However, its correlation values help us interpret theprojected ARIlog correlations. The US model regression is
other models, since they are the least constrained valuestrongly influenced by the high correlations at all lags asso
The US model gave very high correlations of age 1 withciated with age 1. Doing all combinations of bivariate analy
ages 2-8 as well as high correlations between successiwis would produce very similar (nonpositive definite) results.
years, higher than expected under an AR model if the ARWhile the US structure puts no constraints on the cevari
parameter was estimated only from more distant ages. Exances, the AR and BC structures impose strong constraints,
cept for the correlations of age 1 noted above, the correlagenerating more parsimonious models. The variation ob
tions tended to be lower between younger ages than betweeerved in the US correlations at a given lag represents sam
higher ages. This is not unexpected when looking at correlapling effects and (or) is the result of growth patterns.
tions, because new growth each year is a decreasing propor The preferred model (ARlog) has an intuitively appealing
tion of the height at the beginning of the year. structure, where the breeding value of tre@served at time
Genetic correlations for the ARlog model are shown inj (g;) is a function of genes acting at timje- 1 (g;_,) plus
Table 3. The ARIog model essentially estimates one ~autogenes acting on the new measuremeum) (thus g =
correlation coefficient and projects the value to higher lagsp!°90)=1°90~Dl g, , + o;. However, it is necessary to confirm
The projected correlations are higher than the median of thi it is an adequate descrlptlon of the pattern present in the
US model values. The high lag correlations from the BCUS correlation structure. The main question posed by the
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ARlog model is whether the genetic correlation betweertion as the number of measures increases or when they are
ages at higher lag is really so high. As an example, estimatdsighly correlated. Close measures (as in our data set) result
of genetic correlation with the AR model are similar to thosein highly correlated traits increasing the risk that the result
obtained for volume by Apiolaza et al. (1994) until age 9 butmight be nonpositive definite and convergence more -diffi
overestimate the values for older ages. However, the valuesult (Gilmour 1999).
are substantially different from the estimates based on The process of running the UC analysis (equivalent to
cloned material by Burdon et al. (1992). This issue can onlyunivariate analyses by age) was very straightforward from
be resolved from a much larger experiment. In spite of thisboth a modelling and computational perspective. Running
the ARlog model does provide the highest correlations bethe US analysis was less straightforward because of the high
tween the ranking of breeding values at different ages andorrelations between measures (traits). The estim&@gd
the phenotypic ranking at age 15. was close to singular and the algorithm failed to converge
The implications of the high correlation at low lag is that from the naive starting values initially supplied. Using the
measurement of height in consecutive years contributes liresults from the BC model as starting values, the algorithm
tle. However, after say 5 years according to the US and B&onverged to the negative definite solution reported for the
models, the correlation has dropped sufficiently to justifyUS model.
remeasurement. The high correlation of age 1 with later ages The RR model was quite difficult to fit, also requiring a
in the US model (see Fig. 4), if real, suggests that earlynultistage process to achieve convergence. We first fitted a
growth is a good predictor of the genetic component of lateiRR model with intercept and slope, then added the quadratic
height. However, the low heritability at age 1 would mitigate term and finally the cubic term. The Lob values were
against depending on this trait, especially since these could063.71, 7069.12, and 7078.29, respectively. However, the
be carry-over nursery effects and not genetic effects at allvariance matrix for the final model was negative definite
Further, the high correlations of age 1 with later ages undeand only converged after fixing the variance for the -qua
the US model suggest that, whatever these early differencefratic component. The correlations among the components
are, they do persist and are scaled up as the tree grows. were very high despite the definition & using orthogonal
The heritability pattern under the RR model (see Fig. 3)polynomials. An earlier attempt using starting values derived
did not follow the pattern of the previous models. The corre-from the matrixQ;GyQ;, where G, is the additive genetic
lation pattern is also quite different to the other models withvariance matrix from fitting the US model agg is the 10 x
lag 1 correlations ranging from 0.71 at young ages to 0.99 a4 matrix of orthogonal polynomial coefficients also failed to
older ages. One potential explanation was that changes a@bnverge. It was based on the assumption Ggis an esti-
scale dominated the model, and while the other four modelsmate of the matrix we want to approximate with a structure
had separate variance parameters for each age, the RRAQ;, whereA is the variance matrix for the random re-
model had only a function over time. However, a Box—Coxgression coefficients and noting th@Q; is |. That is, if
data transformation did not improve the fitting greatly. TheGy = QAQ; thenQ;GQ; = Q;QiNQQ, = Ay We did not
changes in heritability are related to the function used tdry using other polynomials that might change the conver-
model G,. Random regressions model the trajectory ofgence behaviour.
breeding values, which deviate from other fixed and random
effects included in the model. Hence, a simple polynomialgyrther considerations
(in this case a third-order one) may not be enough to model The use of a multivariate approach takes into account
those deviations. The use of more flexible functions, e.9.nonrandom missing observations caused by mortality,- thin
higher order polynomials or cubic splines, suggested wheRing, or sampling of trees, which can bias parameter esti
there is no previous knowledge about the underlying biologmates (e.g., Apiolaza et al. 1998). Nonetheless nonpositive
ical model (e.g., Verbyla et al. 1997; White et al. 1999), definite matrices, frequently found in forest genetics litera
might improve the estimation. Other examples of RR poorlyture, may still be an issue. “Bending” (Hayes and Hill 1981)
reconstructing theG, matrix obtained from a US multi  or other techniques for restricting genetic parameter matrices
variate analysis are in Van der Werf and Schaeffer (1997)o the parameter space may still be necessary, especially if
and Van der Werf et al. (1998). One problem is that thethe US structure is used and the result is negative definite as

polynomials are by nature highly correlated. here. Where there are large scale effects as in this data set, it
may be preferable to bend the correlation matrix rather than
Number and distribution of measures the covariance matrix unless the data is transformed to-stabi

Often the frequency of measurement of a progeny test ddize the variance. The log likelihood for the bent US model
pends more on budget restrictions than on genetic considetbent and fixedG,, other parameters iterated to conver
ations. Covariance structure modelling may not be possiblgence) reduces to 6854.05, which is lower than the results
when only a few measures are available. On the other handior the ARlog and BC models, confirming the adequacy of
using 6 measures (1, 4, 6, 9, 12, and 15 years) producedasing simplified covariance models. The best way to reduce
similar results to those obtained using 10 measures (detaithe chance of getting a nonpositive definite result is to in
not shown). crease the number of families sampled, reducing the- sam

For most longitudinal variance models, equidistant meapling error of the variance components.
sures are easier to analyse. The presence of unequal intervalsAn alternative approach to the analysis of highly cerre
involves either the manual specification of the bands (BC)ated observations, although beyond the scope of this paper,
or the use of a distance-based power model (AR). The U$% the use of canonical transformation. This technique cre
model is less likely to converge to a positive definite solu ates independent traits that are analyzed separately, and the
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results are transformed back to obtain the full parameter maralia. Their encouragement is much appreciated. Many
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