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Abstract: Variance components were estimated using alternative structures for the additive genetic covariance matrix
(G0), for height (m) of trees measured at 10 unequally spaced ages in an open-pollinated progeny test. These structures
reflected unstructured, autoregressive, banded correlation and random regressions models. The residual matrix (R0) was
unstructured, and the block and plot strata matrices were autoregressive. The best model forG0 considering the likeli-
hood value and number of parameters was the autoregressive correlation form with age-specific variances and time on
a natural logarithm basis. The genetic correlation between successive measures ranged from 0.93 at age 1 to 0.99 at
age 14 years. Heritability increased with age from 0.09 (age 1) to 0.24 (age 7) and then declined to 0.13 at age 15.
Heritabilities from the unstructured model were similar, while heritabilities assuming banded correlations were lower
after age 7. The covariance structure implicit in the random regressions model was considered unsatisfactory. Using
structures inG0 facilitated model fitting and convergence of the likelihood maximisation algorithm. Fitting a structured
matrix that reflects the relationships present in repeated measures may overcome problems of nonpositive definiteness
of unstructured matrices from longitudinal data, especially when genetic variation is small.

Résumé: Les auteurs ont estimé les composantes de la variance à l’aide de structures d’ajustement à la matrice de co-
variances génétiques additives (G0) pour la hauteur (m) d’arbres mesurés à 10 intervalles non réguliers au sein d’un
test de descendances issues de pollinisation libre. Ces structures reflétaient des modèles non structurés, auto-régressifs,
par corrélations stratifiées et par régressions aléatoires. La matrice résiduelle (R0) n’était pas structurée, et les matrices
à l’échelle des blocs et des parcelles étaient auto-régressives. En considérant la valeur de maximum de vraisemblance
et le nombre de paramètres, le meilleur modèle d’ajustement deG0 était celui des corrélations auto-régressives avec les
variances spécifiques à chaque âge et le temps suivant l’échelle logarithmique naturelle. Les corrélations génétiques
entre les mesures successives variaient de 0,93 à 1 an jusqu’à 0,99 à 14 ans. L’héritabilité augmentait avec l’âge, allant
de 0,09 (à 1 an) à 0,24 (à 7 ans) pour décroître à 0,13 à 15 ans. Les héritabilités découlant du modèle non structuré
étaient similaires, alors que les héritabilités découlant du modèle par corrélations stratifiées étaient plus faibles après
7 ans. La structure de covariances implicite au modèle de régressions aléatoires n’a pas été jugée satisfaisante. La
structuration deG0 a facilité l’ajustement des modèles ainsi que la convergence de l’algorithme de maximisation de la
vraisemblance. Les auteurs en concluent que l’ajustement d’une matrice structurée réflétant les liens de dépendance
parmi les mesures répétées peut permettre de résoudre les problèmes de manque de d’exactitude présents dans les ma-
trices non structurées découlant de données longitudinales, spécialement lorsque la variabilité génétique est faible.

[Traduit par la Rédaction] Apiolaza et al. 654

Introduction

The success of tree breeding programmes relies on their
ability to identify and deploy superior trees, progressively
increasing profit. Decisions on how, when, and what to se-
lect are made (or should be made) taking into account ge-

netic and economic information. Selection in tree breeding
programmes is based upon genetic information generated
from progeny tests.

The net present value of genetic gain depends on the total
genetic gain (∆G) and the time when improved material is
deployed and costs (L) are incurred (Newman and Williams
1991). Both∆G andL contain constraints and opportunities
for breeding programmes to make rapid gains. Faster gains
can be achieved by increasing the selection differentials and
(or) the accuracy of prediction. Furthermore, using overlap-
ping generations and early selection can reduce long genera-
tion intervals. Efficient selection at an early age requires
high correlation with rotation-age production traits and rea-
sonably high heritabilities of both. Knowledge of the ex-
pected covariance structure across ages enables prediction of
the response to early selection.

“Longitudinal” data arise when individuals are assessed
for the same outcome at several ages (Diggle et al. 1994; see
Cnaan et al. 1997 for a review). Breeders use longitudinal
data from progeny tests to compare development patterns of
genotypes and look at changes in genetic parameters over
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time. Understanding the genetics of development allows de-
termination of the optimum evaluation time(s) for fine-
tuning breeding programmes and the use of multiple assess-
ments for genetic evaluations. One of the features of longitu-
dinal data is the covariance that exists between observations
of the same individual (Diggle et al. 1994; Hand and Crowder
1996). Covariance matrices typically contain pattern or
structure, which can be modelled with a reduced number of
parameters. Diggle et al. (1994) identify three sources of
variation in longitudinal data: serial correlations, random ef-
fects, and measurement error. These act simultaneously.

Previous researchers in tree breeding have used several
variance models for longitudinal data. Early studies used
univariate analysis at each age, sometimes fitting a curve
through the estimates to smooth and interpolate the results
(e.g., Foster 1986). This procedure may produce unbiased
estimates of heritability in absence of selection but ignores
the dependence (covariance) between times. Other studies
used bivariate analyses of each pair of times (e.g., Balocchi
et al. 1993), increasing the understanding of the association
between measures. Another procedure uses the correlations
between family means of the same genetic material grown at
different sites, i.e., based on type B correlation (Burdon
1977; see Hodge and White 1992 for an extensive applica-
tion), with the intention of avoiding error correlation be-
tween the measures.

Longitudinal analyses are more efficient using all avail-
able information, especially when missing observations are a
problem. Progeny tests, as other long-term forestry experi-
ments, do not maintain the original design. Even when a test
starts as a balanced experiment, mortality generates temporal
imbalance; hence, early measures contain more records than
later ones (Gregoire et al. 1995). Some authors choose to
eliminate temporal unbalance, keeping only individuals with
a full history of measures (e.g., Balocchi et al. 1993), but
this approach omits useful data and does not consider that
biases may arise if mortality is not random.

There are recent attempts with forest trees to use two con-
trasting models for genetic correlation: a repeatability (uni-
variate) model (e.g., Wei and Borralho 1996) and a full
multivariate model (e.g., Wei and Borralho 1998). The re-
peatability model assumes that all measures represent the
same trait. This implies a genetic correlation of one between
all pairs of records, equal variance for all records and equal
environmental correlation between all pairs of records. The
model can be represented byG = σa

2J and R = σe
2(I + rJ)

where I is the identity matrix,J is a square matrix with all
elements equal to 1,σa

2 is the additive genetic variance com-
ponent,σe

2 is the error variance component andr/(1 + r) is
the correlation between residuals. With height increasing
with age over many years, the equal variance and genetic
correlation assumptions are often unrealistic, although variance
heterogeneity may be crudely removed through standardiza-
tion. In contrast, the full multivariate model considers each
age as the realization of a different trait. It was originally ap-
plied to balanced and complete data, but modern computing
techniques allow its application to incomplete data sets.

Unstructured covariance matrices in a full multivariate
analysis are feasible and reasonable with a small number,t,
of successive measures. However, since these matrices have
t(t – 1)/2 covariance components, more measures implies a

large number of poorly estimated parameters and may be
considered an overparameterization (Hand and Crowder
1996). That is, there may not be enough information in the
data to estimate each variance and covariance with sufficient
accuracy for the resulting matrix to be coherent (positive
definite), and the likelihood maximization algorithm may
even fail to converge. This is less a problem with some
structured matrices, making appealing the assumption of
more parsimonious covariance structures ast increases.

Some researchers have recognized the need for structured
covariance matrices, yet only in isolated cases. For example
Quaas et al. (1984, p. 34) proposed the use of an autoregres-
sive error structure in a repeatability model, relaxing the
equal correlation assumption. Kremer (1992) explicitly recog-
nized the role of error serial correlation for the analysis of
height increments. Coelli et al. (1998) compared several dif-
ferent structures for the multivariate analysis of additive ge-
netic effects of repeated measures in a sheep breeding context.

An alternative approach for modelling covariance struc-
tures, regression models with random coefficients, was intro-
duced by Rao (1965) in the context of growth models. Laird
and Ware (1982) generalized the theory to include mixed
models, with fixed parameters at the population level and
random parameters at the individual level. Under this frame-
work, unbalanced and incomplete data sets are readily handled,
and the correlation among successive measures is implicitly
modelled by the random regressions (Louis 1988; Vonesh
and Chinchilli 1997). Schaeffer and Dekkers (1994), Jam-
rozik and Schaeffer (1997), and Jamrozik et al. (1997) ap-
plied random regression models to the analysis of lactation
records, while Gregoire et al. (1995) advocated the use of
random regressions to model growth in permanent plots in
forest mensuration. The use of random regressions in these
studies allowed for individuals with heterogeneous ages to
be included in the analyses, and a reduction of computa-
tional requirements compared with unstructured multivariate
analyses. Random regression models directly define covari-
ance functions that are the continuous (infinitesimal) equiva-
lent of a covariance matrix for a given trait and fixed ages
(Kirkpatrick et al. 1990, 1994). These functions permit us to
calculate the covariance between any two ages, as can also
be done with the distance-based autocorrelation model. So,
the association among measurements may be modelled ei-
ther through random regressions or through specification of
covariance structures. In some cases both methods are used
together (e.g., Chi and Reinsel 1989; Jones 1990).

In this paper we model longitudinal data from a progeny
test. We compare estimated genetic parameters obtained
from traditional approaches with those from various vari-
ance models under the general mixed model. First, we intro-
duce the general model in a tree breeding context. Then we
present alternative structures for the additive genetic
covariance matrix. Finally, we discuss opportunities and lim-
itations for the use of these models.

Materials and methods

Data set
The forestry company Bosques Arauco S.A. established

trial FA8102 in the VIII Región of Chile in 1981 to prog-
eny test 45 radiata pine (Pinus radiataDonn ex D. Don)

© 2000 NRC Canada

646 Can. J. For. Res. Vol. 30, 2000

I:\cjfr\cjfr30\cjfr-04\X99-246.vp
Tuesday, May 02, 2000 10:12:26 AM

Color profile: Disabled
Composite  Default screen



open-pollinated first-generation selections with 9 controls.
These were planted in five-tree plots within eight random-
ized complete blocks, a total of 2160 trees. Control plots
were planted with mixed seed of unknown pedigree and have
been omitted from the analysis. Trees that were suppressed by
early competition never reached 5 cm diameter at breast
height (DBH) and were also omitted. Consequently, a total of
1526 trees in 353 plots were included in the analysis, each
tree being from seed collected from one of 45 mother trees.

The trees were assessed for height at 1, 2, 4, 5, 6, 7, 8, 9,
12, and 15 years of age. In the case of trees with mechanical
damage (as those broken by wind at age 12), observations
after the damage occurred were eliminated. Summary statis-
tics by age are presented in Table 1. Small fluctuations of
the number of trees between ages 1–2 and 6–7 are caused by
the elimination of inconsistent assessments. It is only after 9
years that there is appreciable mortality among the trees.
The regression of log(standard deviation) on log(mean
height) has a slope of 0.74 ± 0.03 suggesting that a power
transformation of the data to height0.26 would stabilize the
variance (Box and Cox 1964). However, we will analyse the
data on the measurement scale using models with heteroge-
neous variances to account for the increase of variance with
age.

General linear mixed model
An individual tree (“animal”) linear mixed-effects model

equation for longitudinal data of treei can be expressed as

[1] y X m Z b Z p Z a ei i i ii i i
= + + + +B P T

whereyi is the vector ofsi observations for the individual in-
dexed by age,m is the vector of fixed effects (which may
include regression coefficients at population level),b is the
vector of random block by age effects,p is the vector of ran-
dom plot by age effects,ai is the vector of individual ran-
dom additive genetic effects, andei is the vector of random
residuals.X i, ZBi

, ZPi
, andZTi

are incidence matrices relat-
ing m, b, p, andai to yi. Thus the expected value and disper-
sion matrices assuming a multivariate normal distribution
(MND) are
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whereB0, P0, G0, andR0 are the block, plot, additive genetic,
and residual covariance matrices, respectively, and0 is a null
matrix (with all elements equal to 0). The corresponding
characteristic elements (for measuresj and k) areσbjk

, σ pjk
,

σa jk
andσejk

. The number of observations per individual may
vary in which case the corresponding rows and columns ofR0
are deleted. Finally, the phenotypic covariance matrix is

[3] V Z B Z Z P Z Z G Z Ri i i i i i i
= + + +′ ′ ′

B B P P T T0 0 0 0

Extending the model equation to then subjects of a prog-
eny test we obtain

[4] y = Xm + ZBb + ZPp + ZTa + e

for y = (y1
′ , y2

′ , …, yn
′ ′) , a = (a1

′ , a2
′ , …, an

′ ′) , e = (e1
′ , e2

′ , …,
en

′ ′) , X = (X1
′ , X2

′ , …, Xn
′ ′) , ZB = (ZB1

′ , ZB2
′ , …, ZBn

′ ′) , ZP =
(ZP1

′ , ZP2
′ , …, ZPn

′ ′) , andZT = Σ⊕ZTi
. Hence, in the disper-

sion matrix B = Σ⊕B0, P = Σ⊕P0, G = An⊗G0, and R =
Σ⊕R0, whereAn is the numerator relationship matrix,Σ⊕ de-
notes direct sum, and⊗ represents direct product operation
(Searle 1982). Since the genetic relationships in our study
are limited to half-sib information, it is possible to fit the
equivalent half-sib (“sire”) model with family rather than
tree as the random factor. We keep the tree model notation
for the sake of generality.

Parameterizations of the model
The expected value ofyi is X im (eq. 2). This is used to

model the average performance of trees as fixed effects and,
in this case, is the mean at each age. From eq. 3, the depend-
ence of the variance ofyi on the specification ofB0, P0, G0,
andR0 is clear. Since our main interest in the analysis isG0,
thus following Coelli et al. (1998), we will fit an unstruc-
tured error covariance matrix (R0) while examining various
forms for the additive genetic covariance matrix. For the
block (B0) covariance matrix we use an autoregressive cor-
relation structure with separate variances at each time, be-
cause it matches our general expectation that the correlation
would reduce as the time interval increases. Since there are
only eight blocks, an unstructured form forB0 would be sin-
gular and not estimable. For the plot (P0) matrix we will
primarily use a similar autoregressive correlation structure
with heterogeneous variance but will also report some re-
sults from fitting an unstructured form.
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Age
No. of
individuals

Percentage
of trees Height (m)

1 1522 88.4 0.48 (0.12)
2 1525 88.6 1.00 (0.22)
4 1525 88.6 2.98 (0.60)
5 1524 88.6 4.60 (0.85)
6 1511 87.8 6.45 (1.02)
7 1515 88.0 8.43 (1.11)
8 1510 87.7 10.43 (1.22)
9 1505 87.4 12.11 (1.36)

12 1351 78.5 17.97 (1.79)
15 1284 74.6 22.34 (2.46)

Note: Values for height are means, with SD given in
parentheses. The percentage of trees refers to the
individuals included in the analyses relative to the number
initially established (1721, without considering controls and
fillers) discounting natural mortality, mechanical damage
and inconsistent measures.

Table 1. Summary statistics by age.
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We examine the following forms for the additive genetic
covarianceG0 (examples of the structures are displayed in
Fig. 1):

(1) Full multivariate model (US). HereG0 is an unstruc-
tured matrix.

(2) Banded correlation model (BC) with heterogeneous vari-
ances. HereG0 = SCBCS, whereS is diagonal matrix of
the square roots of the genetic variance components at
each age andCBC is a banded correlation matrix with a
specific correlation for each particular age interval.

(3) Autoregressive model (AR) with heterogeneous vari-
ances. HereG0 = SCARS, whereS is as above andCAR
has an autoregressive correlation structure. We use a
power formulation (Diggle et al. 1994) which allows
for the unequal age intervals, and compare submodels
where the age is expressed on the natural (ρ| − |k j ,

ARnat), square root (ρ
k j−

, ARsqr), and logarithmic
( |log( ) log( )|ρ k j− = ρ|log( / )|k j , ARlog) scales, whereρ is a cor-
relation coefficient andj and k are the two ages. Note
that when lag (age interval) is expressed in a logarith-
mic scale the correlation depends upon an age ratio.

(4) Random regression model (RR) using orthogonal poly-
nomials. HereG0 = QiΛ0Q i

′, where Λ0 is the random
regressors covariance matrix andQi hasq + 1 columns
containingz0, z1, z2, …, zq, respectively, whereq is the
order of the polynomial andzi is the ith orthogonal
polynomial vector. Additionally,ai = Qiλ i, whereλ i is
the vector of random regression coefficients.

(5) Lastly, an uncorrelated model (UC) (for estimating
heritabilities only) is fitted, which is equivalent to a tra-
ditional univariate analysis by age. Here all covariances
in G0 (as well as inR0) are zero.

All models are fitted by restricted maximum likelihood
(REML; Patterson and Thompson 1971) using the average

information algorithm (Gilmour et al. 1995) implemented in
ASReml (Gilmour et al. 1998).

Model selection
Adding variance parameters to a model may result in a

better fit and hence increase the likelihood value. Several
criteria may be used to judge whether additional parameters
are making an important contribution to the fit. The likeli-
hood ratio test formally tests whether the increase is statisti-
cally significant. Akaike’s information criterion and
Bayesian information criterion (Akaike 1974; Jones 1993;
Carlin and Louis 1996) penalize the likelihood by the num-
ber of independently fitted parameters used in the model.
Based on previous experiences in genetic analyses (Wada
and Kashiwagi 1990) we will use Akaike’s criterion (AIC),
which penalizes likelihood values in such a way that any ex-
tra parameter must increase the likelihood by at least one
unit to be included in the model:

AIC = –2 Log L + 2p

where –2 LogL is twice the negative log-likelihood value
for the model andp is the number of estimated parameters.
Smaller values of AIC reflect an overall better fit.

Genetic parameters
Estimates of heritability (hj

2) at agej and genetic correla-
tion (rjk) between agesj and k are calculated as

$
$

$ $ $ $
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Fig. 1. Covariance structures fitted in this study (example using only four ages or measures). Different letters (a, b, etc.) represent dif-
ferent values of correlation. US, unstructured; BC, banded correlations; AR, autoregressive (tj is age at measurementj), RR, random
regressions expressed as the productQ Qi iΛ0

′ (zij is the ith orthogonal polynomial vector evaluated at agej); UC, uncorrelated. See text
for more detail in the explanation.
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using the appropriate variance and covariance estimates
from G0, B0, P0, andR0. Standard errors of the estimates are
calculated by ASReml from the average information matrix,
using a standard Taylor series approximation (Gilmour et al.
1998).

Results and discussion

Exploratory analysis
Figure 2 shows a box plot of height versus age. The mid-

point, box, and whiskers represent the mean, mean ± SD,
and minimum–maximum, respectively. This plot depicts an
increase of variance with time, which is typical of longitudi-

nal data for growth. It also reveals that the distribution of
heights at particular ages is not symmetric after year 5. This
asymmetry would be aggravated if a variance stabilizing
transformation was applied to the data. The figure suggests
that a cubic polynomial (broken line) is a reasonable model
to form the basis for modelling genetic effects as random
regressions.

Variance models
The log-likelihood values for a range of models are in

Table 2. They range from –3418.2 for the UC model to
7098.9 (7153.2) for the US model with autoregressive (un-
structured) plot error structure. Using AIC, the best model

© 2000 NRC Canada
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Fig. 2. Box plot of height versus age. The midpoint, box, and whiskers represent the mean, mean ± SD, and minimum–maximum,
respectively. A cubic polynomial (......) is fitted to the data.

Model
No. of parameters
(B0 + P0 + G0 + R0)

Log
likelihood AICa

AutoregressiveP0: base model 11 + 11 + 0 + 55 = 77 7062.51 –13 971.02

Full multivariate (US)b 11 + 11 + 55 + 55 = 132 7098.87 –13 933.74

Banded correlations (BC) 11 + 11 + 21 + 55 = 98 7074.94 –13 953.88

Autoregressive (ARnat – age) 11 + 11 + 11 + 55 = 88 7067.04 –13 958.08

Autoregressive (ARsqr – age) 11 + 11 + 11 + 55 = 88 7067.85 –13 959.70

Autoregressive (ARlog – log(age))c 11 + 11 + 11 + 55 = 88 7068.60 –13 961.20

Random regression (RR)d 11 + 11 + 10 + 55 = 87 7078.29 –13 982.58

UnstructuredP0: base model 11 + 55 + 0 + 55 = 121 7124.78 –14 007.56

Full multivariate (US)e 11 + 55 + 55 + 55 = 176 7153.17 –13 954.34

Autoregressive (ARlog – log(age))f 11 + 55 + 11 + 55 = 132 7127.84 –13 991.68

Uncorrelated (UC) 10 + 10 + 10 + 10 = 40 –3418.23 6 916.46

aAIC = –2 × log likelihood + 2 × number of parameters.
bG0 is nonpositive definite; log likelihood reduces to 6854.05 after bending.
cBest model includingG0 and considering autoregressiveP0.
dReduced rank version: the model converged only by fixing the variance for the quadratic component.
eG0 is nonpositive definite.
fBest model includingG0 and considering unstructuredP0.

Table 2. Comparison of multivariate models.
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(i.e., the one with the lowest value) for both plot error
structures is the base model, i.e., the one with no tree effects
fitted. Of those with tree effects fitted, the best is the ARlog
structure having age on a natural logarithm basis with AIC =
–13 961.2. It is followed by the ARsqr, the ARnat, the BC,
and the US models (Table 2). The RR model is considered
later. The ARnat and ARsqr models have slightly lower
heritabilities and slightly higher genetic correlations than the
ARlog model, and so their parameters are not included in
Figs. 3 and 4. In the following discussion we refer to models
fitted with an AR plot variance, since not all models would
converge to positive definite solution when fitted with a US
plot variance model. The genetic parameters with AR plot
variance were not much different from those with US plot
variance.

The proportions by age for all variance components in the
ARlog model are in Table 3. Plot variances are the largest
component (18%) in the early years slowly declining in rela-
tive magnitude about 1% per year. The early plot variation
might reflect carry-over effects from the nursery. The block
variance component is around 5% before declining after age
9. The residual variance is stable at around 60% of pheno-
typic variance until age 9 increasing to 85% at age 15.

Heritability estimates under the ARlog model (Table 3)
increase with age from 0.091 at age 1 to 0.238 at age 7 and
then decline to 0.129 at age 15. The BC model gave higher
heritability before age 8 and lower heritability for later mea-
surements (Fig. 3). However, compared with the ARlog
model, an increase in the likelihood of 6.3 with 10 extra pa-
rameters indicates that the model does not fit the data signif-
icantly (P > 0.05) better. Heritabilities from the US and UC
models are very similar to the values from the ARlog model,
reaching a maximum of 0.241 and 0.224, respectively
(Fig. 3). The figure also includes the asymptotic estimate of
the standard error of the heritability from the ARlog model.
There is little difference in the standard error of the
heritability estimates from the AR (with any time scale),
BC, US, and UC models.

The heritability differences among these models are quite
small until age 6, when the BC model starts underestimating
later values. The benefits of a multivariate versus a uni-
variate approach are clearer when covering traits with large
differences between genetic and residual correlations, con-
trasting heritabilities (Thompson and Meyer 1986) or there
are many missing values for some traits, especially if not
missing at random. Here however, the correlations are
mostly high, all heritabilities are moderate and only 16% of
trees have missing values, particularly at ages 12 and 15.

Figure 4 shows the values of genetic correlation plotted
against lag for the ARlog, BC, and US models. The simple
regressions of the correlations on lag shown in Fig. 4 hadR2

coefficients of 0.58, 0.97, and 0.53 for ARlog, BC, and US,
respectively. The correlation between successive ages under
the ARlog model increased from 0.932 at age 1 to 0.993 at
14 years of age. The BC model has a single value for each
lag whereas the ARlog and US models have several values
for each lag, although the ARnat model has a single value
per lag.

The US estimates ofG0 were both nonpositive definite
and with some correlations above 1 (Fig. 4). Such a solution
is not easily used in practice but commonly occurs because
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of sampling variation when there are small numbers of fami-
lies. However, its correlation values help us interpret the
other models, since they are the least constrained values.
The US model gave very high correlations of age 1 with
ages 2–8 as well as high correlations between successive
years, higher than expected under an AR model if the AR
parameter was estimated only from more distant ages. Ex-
cept for the correlations of age 1 noted above, the correla-
tions tended to be lower between younger ages than between
higher ages. This is not unexpected when looking at correla-
tions, because new growth each year is a decreasing propor-
tion of the height at the beginning of the year.

Genetic correlations for the ARlog model are shown in
Table 3. The ARlog model essentially estimates one auto-
correlation coefficient and projects the value to higher lags.
The projected correlations are higher than the median of the
US model values. The high lag correlations from the BC

model agree better with the US model values than do the
projected ARlog correlations. The US model regression is
strongly influenced by the high correlations at all lags asso-
ciated with age 1. Doing all combinations of bivariate analy-
sis would produce very similar (nonpositive definite) results.
While the US structure puts no constraints on the covari-
ances, the AR and BC structures impose strong constraints,
generating more parsimonious models. The variation ob-
served in the US correlations at a given lag represents sam-
pling effects and (or) is the result of growth patterns.

The preferred model (ARlog) has an intuitively appealing
structure, where the breeding value of treei observed at time
j (aij) is a function of genes acting at timej – 1 (aij–1) plus
genes acting on the new measurement (αj), thus aij =
ρ|log( ) log( )|j j− −1 aij–1 + αj. However, it is necessary to confirm
if it is an adequate description of the pattern present in the
US correlation structure. The main question posed by the
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Fig. 3. Heritability estimates based on fitting the unstructured (US; —s—), banded correlation (BC;...!...), autoregressive
(ARlog; ---∆---), random regressions (RR; —!—), and uncorrelated (UC; ···+···) models considering autoregressive plot errors, and
standard error of the heritability for the autoregressive (......) model.

Fig. 4. Genetic correlations for different lags between measures for unstructured (US; —s—), banded correlations (BC;...!...), and
autoregressive (ARlog; —∆—) models considering autoregressive plot errors.
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ARlog model is whether the genetic correlation between
ages at higher lag is really so high. As an example, estimates
of genetic correlation with the AR model are similar to those
obtained for volume by Apiolaza et al. (1994) until age 9 but
overestimate the values for older ages. However, the values
are substantially different from the estimates based on
cloned material by Burdon et al. (1992). This issue can only
be resolved from a much larger experiment. In spite of this,
the ARlog model does provide the highest correlations be-
tween the ranking of breeding values at different ages and
the phenotypic ranking at age 15.

The implications of the high correlation at low lag is that
measurement of height in consecutive years contributes lit-
tle. However, after say 5 years according to the US and BC
models, the correlation has dropped sufficiently to justify
remeasurement. The high correlation of age 1 with later ages
in the US model (see Fig. 4), if real, suggests that early
growth is a good predictor of the genetic component of later
height. However, the low heritability at age 1 would mitigate
against depending on this trait, especially since these could
be carry-over nursery effects and not genetic effects at all.
Further, the high correlations of age 1 with later ages under
the US model suggest that, whatever these early differences
are, they do persist and are scaled up as the tree grows.

The heritability pattern under the RR model (see Fig. 3)
did not follow the pattern of the previous models. The corre-
lation pattern is also quite different to the other models with
lag 1 correlations ranging from 0.71 at young ages to 0.99 at
older ages. One potential explanation was that changes of
scale dominated the model, and while the other four models
had separate variance parameters for each age, the RR
model had only a function over time. However, a Box–Cox
data transformation did not improve the fitting greatly. The
changes in heritability are related to the function used to
model G0. Random regressions model the trajectory of
breeding values, which deviate from other fixed and random
effects included in the model. Hence, a simple polynomial
(in this case a third-order one) may not be enough to model
those deviations. The use of more flexible functions, e.g.,
higher order polynomials or cubic splines, suggested when
there is no previous knowledge about the underlying biolog-
ical model (e.g., Verbyla et al. 1997; White et al. 1999),
might improve the estimation. Other examples of RR poorly
reconstructing theG0 matrix obtained from a US multi-
variate analysis are in Van der Werf and Schaeffer (1997)
and Van der Werf et al. (1998). One problem is that the
polynomials are by nature highly correlated.

Number and distribution of measures
Often the frequency of measurement of a progeny test de-

pends more on budget restrictions than on genetic consider-
ations. Covariance structure modelling may not be possible
when only a few measures are available. On the other hand,
using 6 measures (1, 4, 6, 9, 12, and 15 years) produced
similar results to those obtained using 10 measures (details
not shown).

For most longitudinal variance models, equidistant mea-
sures are easier to analyse. The presence of unequal intervals
involves either the manual specification of the bands (BC)
or the use of a distance-based power model (AR). The US
model is less likely to converge to a positive definite solu-

tion as the number of measures increases or when they are
highly correlated. Close measures (as in our data set) result
in highly correlated traits increasing the risk that the result
might be nonpositive definite and convergence more diffi-
cult (Gilmour 1999).

The process of running the UC analysis (equivalent to
univariate analyses by age) was very straightforward from
both a modelling and computational perspective. Running
the US analysis was less straightforward because of the high
correlations between measures (traits). The estimatedG0
was close to singular and the algorithm failed to converge
from the naïve starting values initially supplied. Using the
results from the BC model as starting values, the algorithm
converged to the negative definite solution reported for the
US model.

The RR model was quite difficult to fit, also requiring a
multistage process to achieve convergence. We first fitted a
RR model with intercept and slope, then added the quadratic
term and finally the cubic term. The LogL values were
7063.71, 7069.12, and 7078.29, respectively. However, the
variance matrix for the final model was negative definite
and only converged after fixing the variance for the qua-
dratic component. The correlations among the components
were very high despite the definition ofQi using orthogonal
polynomials. An earlier attempt using starting values derived
from the matrixQ G Qi i

′
0 , whereG0 is the additive genetic

variance matrix from fitting the US model andQi is the 10 ×
4 matrix of orthogonal polynomial coefficients also failed to
converge. It was based on the assumption thatG0 is an esti-
mate of the matrix we want to approximate with a structure
Q Qi iΛ0

′, whereΛ0 is the variance matrix for the random re-
gression coefficients and noting thatQ Qi i

′ is I . That is, if
G0 = Q Qi iΛ0

′ thenQ G Qi i
′

0 = Q Q Q Qi i i i
′ ′Λ0 = Λ0. We did not

try using other polynomials that might change the conver-
gence behaviour.

Further considerations
The use of a multivariate approach takes into account

nonrandom missing observations caused by mortality, thin-
ning, or sampling of trees, which can bias parameter esti-
mates (e.g., Apiolaza et al. 1998). Nonetheless nonpositive
definite matrices, frequently found in forest genetics litera-
ture, may still be an issue. “Bending” (Hayes and Hill 1981)
or other techniques for restricting genetic parameter matrices
to the parameter space may still be necessary, especially if
the US structure is used and the result is negative definite as
here. Where there are large scale effects as in this data set, it
may be preferable to bend the correlation matrix rather than
the covariance matrix unless the data is transformed to stabi-
lize the variance. The log likelihood for the bent US model
(bent and fixedG0, other parameters iterated to conver-
gence) reduces to 6854.05, which is lower than the results
for the ARlog and BC models, confirming the adequacy of
using simplified covariance models. The best way to reduce
the chance of getting a nonpositive definite result is to in-
crease the number of families sampled, reducing the sam-
pling error of the variance components.

An alternative approach to the analysis of highly corre-
lated observations, although beyond the scope of this paper,
is the use of canonical transformation. This technique cre-
ates independent traits that are analyzed separately, and the
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results are transformed back to obtain the full parameter ma-
trix with the original traits (measures) (Jensen and Mao
1988). It has restrictions on the number of random effects
used in the model and the pattern of missing observations
(Lin and Smith 1990; Ducrocq and Besbes 1993).

Conclusions

The use of structured covariance matrices for longitudinal
data constrains the correlations to a pattern dependent on the
form of the model, potentially smoothing the estimates of
heritability and genetic correlation. It also facilitates model
fitting and convergence of the likelihood-maximization algo-
rithm. Models that take into account the ordering implicit in
successive measures are preferred to the unstructured covari-
ance model when assessing the changes of likelihood rela-
tive to the number of parameters. The results presented in
this paper suggest that the ARlog model reproduced the re-
sults from the US model well enough, while simplifying the
analysis; therefore, the US covariance structure is probably
not the “best” model for longitudinal data. Equally important
is that, assuming AIC is an appropriate model selection cri-
terion, small data sets might not provide enough information
to discriminate between some of the models (e.g., RR). On
the other hand, if the data set is appropriate AIC appears to
be insensitive to substantial differences of genetic parameters.

The results from this study are from a small sample (45
families with up to 40 trees and 10 longitudinal measures of
1 trait, for a total of 15 260 records), but they provide a
good starting point for analyses involving larger data sets.
OnceG0 andR0 are estimated, covariance functions can be
easily developed (e.g following Kirkpatrick′s methodology)
allowing for a more detailed study of early selection proce-
dures. Further research might contemplate the use of several
measurements to improve early prediction of breeding val-
ues (currently under preparation by the authors of this study)
and modelling the simultaneous change of other growth
traits and wood properties, using multitrait models (Van der
Werf et al. 1998).

Although recent literature has emphasized the use of ran-
dom regression for the analysis of longitudinal data (e.g.,
Jamrozik and Schaeffer 1997; Jamrozik et al. 1997; Meyer
1998; Van der Werf et al. 1998; White et al. 1999), random
regressions are not necessarily suitable for all data sets.
Given the potential reduction of number of parameters, other
functional relationships (e.g., growth models) that could be
used with random regressions within a linear model frame-
work to modelG0 should be studied.

Finally, the “best” parameterizations can be trait specific,
i.e., different traits may require different structures (e.g.,
Coelli et al. 1998). Thus, it is necessary to identify the most
appropriate model for each trait considered in a breeding
programme. Nevertheless, simple models like AR seem to
be flexible enough to hold in many common tree breeding
situations.
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