Analysis of Longitudinal Data from
Progeny Tests: Some Multivariate
Approaches
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ABSTRACT. Longitudinal data arise when trees are repeatedly assessed over time. The degree of
genetic control of tree performance typically changes over time, creating relationships between
breeding values at different ages. Longitudinal data allow modeling the changes of heritability and
genetic correlation with age. This article presents a tree model (i.e., a model that explicitly includes
a term for additive genetic effects of individual trees) for the analysis of longitudinal data from a
multivariate perspective. The additive genetic covariance matrix for several ages can be expressed in
terms of a correlation matrix pre- and post-multiplied by a diagonal matrix of standard deviations.
Several models to represent this correlation matrix (unstructured, banded correlations, autoregressive,
full-fit and reduced-fit random regression, repeatability, and uncorrelated) are presented, and the
relationships among them explained. Kirkpatrick’s alternative approach for the analysis of longitudinal
data using covariance functions is described, and its similarities with the other models discussed in
this article are detailed. The use of Akaike’s information criterion for model selection considering
likelihood and number of parameters is detailed. All models are illustrated through the analysis of
weighed basic wood density (in kg/m3) at four ages (5, 10, 15, and 20 yr) from radiata pine increment
cores. For. Sci. 47(2):129-140.
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REE BREEDING HAS A MULTIVARIATE NATURE. In most assessed at several pointsintime (e.g., basic wood density at
breeding programs, the selection criteria involve ages5, 10, and 15). Thus, expressions of thetrait at different
times are considered different variables.

two or more characteristics. Apart from the obvious

usewhen dealing with different traits (e.g., growth and wood
properties), a multivariate approach can be utilized with
different expressions of the sametrait. Hence, problems of a
seemingly univariate structure can be fully exploited in a
multivariate framework. For example, growth rate assessed
intwo different environmentscan bemodeled asif controlled
by different genes, and treated as a multivariate analysis
(Falconer 1952). Here the genetic correlation between the
traits is a measure of genotype by environment interaction.
Another application, which we study here, isin the analysis
of longitudinal data that arise when trees are repeatedly

We make a distinction between longitudinal data and
repeated measures because the latter term not only in-
cludesdifferent times (longitudinal data) but also multiple
assessments of morphological traits (e.g., lengths of right
and left wings of a bird) or measures under different
conditions (Cnaan et al. 1997). Longitudinal data can be
considered a particular form of multivariate data—be-
causethe“sametrait” ismeasured at each time, thereisan
underlying continuum (time) and the sequential nature of
measurement creates patterns of variation (Hand and
Crowder 1996).
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Longitudinal data allow modeling the changes of herita-
bility and genetic correlationswith age. Therefore, datafrom
multiple assessments may be integrated in the prediction of
breeding values and this allows the evaluation timefor early
selection to be optimized (Burdon 1989). Longitudinal data
are a frequent feature of tree breeding programs; however,
their analysis has often been reduced to a univariate ap-
proach. There are examples of multivariate modeling of
longitudinal datain forest mensuration (e.g., Gregoire et a.
1995). Multivariate applicationsin tree breeding are scarce
and have typically considered only a full unstructured ap-
proach (e.g., Wei and Borralho 1998). Theonly exceptionwe
areaware of isMagnussen and Kremer (1993), fitting growth
models to individual trees and Apiolaza et al. (2000), com-
paring different parameterizations of the additive genetic
covariance matrices. Although the use of best unbiased linear
prediction and tree models (Henderson 1984) isincreasingly
popular (e.g., Borralho 1995), thereisno unified presentation
of itstheoretical background and thelink between univariate
and multivariate analysesin atree breeding context. Further-
more, simple models like covariance functions, well known
in evolutionary genetics and animal breeding, have received
little attention in tree breeding, and their relationship with
multivariate analysis has not yet been discussed.

Thisarticleprovidesaunified presentation of multivariate
analysiswith longitudinal datafrom progeny trials(i.e., with
a genetic structure) using a tree model. A univariate tree
model isdetailed and then extended to multivariateform. We
explain the concept of covariance structures and show the
relationships among these structures and the corresponding
predicted breeding values. Several statistical modelsto deal
with covariance structures are specified, the relationship
between full multivariate analysis and random regression
modelsis demonstrated, and model selection techniquesare
presented. An alternative approach, covariance functions, is
also discussed. An example is developed comparing the
different models.

Univariate Analysis

In a typical univariate analysis the scalar phenotypic
observationy; onindividual i isexpressedintheso-calledtree
model (see Borralho 1995) as a function of fixed effects,
additivegenetic valueof thetree(a,) and aresidual effect (g):

Yi=x'b+a+e (1)
wherey isavector of observationson onetrait,b =[b; b, ...
by]" isthevector of fixed effects (e.g., overall mean, site, etc.)
andx;"=[1...] isarow vector containing 1'sand 0’ slinking
observations to the fixed effects. This notation is for the
observation of a single individual. Considering all N trees
under analysis, and extending the matrix notation, Equation
(1) becomes:

y=Xb+Za+e 2

where b is the vector of fixed effects (as defined before),
a=[a; a,... ay]" isthe vector of random additive genetic
values, and e = [e; e, ... g]" is the vector of random
residuals. Theincidence matrices X (obtained by stacking
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x;" for al trees) and Z links observations to b and a,
respectively. Thevector of expected val uesand thedisper-
sion matrices are defined by:

Ely]=XDb

Var[a] = G =A02,Vare] =R =102

and Var[y] =ZGZ' +R &

where Ay is the numerator relationship matrix, which de-
scribes the additive genetic relationship among individuals
(see Mrode 1996, Chapter 2, for a detailed explanation). In
addition, | is an identity matrix, gg is the additive genetic
variance, and gg istheerror variance. Random effectsa and
e are assumed to be uncorrelated.

Theanalysisof progeny testsnormally involvestwo steps:
first the estimation of variance components and second the
prediction of breeding values for the individuals, using the
variance components estimated in the first step. Restricted
maximumlikelihood (REML, Pattersonand Thompson1971)
is being increasingly used for variance components estima-
tion in tree breeding (e.g., Huber et a. 1994, Dieters et al.
1995), although there are now a few applications with a
Bayesian approach using Monte Carlo Markov Chains (e.g.,
Soria et al. 1997).

Assuming that y, a, and e follow a multivariate normal
distribution, and provided G and R are positive definite, best
linear unbiased predictions (BLUP), (Henderson 1984) of
the breeding values of the individuals are calculated using
Henderson’s mixed model equations (Henderson 1984):

orox  xwiz B0 Geryd

EZ'R'X zZR'z+G'gRg Z'RYH

where G and R arefunctionsof g2 and g2 respectively [see
Equation (3)]. In practice, estimates G and R are used in
place of unknown parameters, so the predicted breeding
values are in fact approximations of BLUP.

To obtain REML estimates of variance components the
log-likelihood (Log L) function is maximized with respect to
oZand g2, subject to the constraints that these parameters
are within the parameter space (i.e., nonnegative and less or
equal to the total phenotypic variance):

(4)

LoglL =
~1/2[con+log|G [+log|R [+log|C|+y'Py] ©

whereconisaconstant, G and R areasfrom Equation (3), C is
the coefficient matrix of Equation (4), P isthe projection matrix
VA_vAX (X' VX)X VL and (X' V1 X) representsa
generalizedinverseof (X' V1X). Thematrix P absorbsthefixed
effects and accounts for information about V.

Multivariate Analysis

Thestepsinvolvedinamultivariateanalysisaresimilar to
the univariate case. Consider now a vector y; = [y;1 Y5 ---
Yiml representing m observations (either different traits or



repeated measurements) onindividual i. This vector of phe-
notypic observationscan beexpressedintermsof geneticand
environmental components using:

yi=Xib+Z;a; +g (6)

where b = [b' i1 D'trait2 -+ D'iraitml | 1S the vector of fixed
effects (which can be different for each trait), a, = [a,1 &, ...
a;)] 'isthevector of random additive genetic effectsand g, =
(61 &5 .- &) " is the vector of random residuals. The
incidencematriceshavethesamefunctionasintheunivariate
case, and X; and Z; have one row for each observationiny;.
Note the use of matrix notation for additive genetic effects
and residualsalready at theindividual level, and the similar-
ity to Equation (2) (but for the subscript i).

The expected value and dispersion for a noninbred indi-
vidual are defined by:

Ely;] =X;b

Vala] =Gy, Vale] =R,
and

, (7)
Varlyi]=Z;GoZ; +Ry

Inthe multivariate approach, G and R represent themxm
additive genetic and residual s covariance matrices between the
observations, respectively. Their typical elementsfor traits (or
measurements)j andkare 05, and O, . Again, randomeffects
a, and g are assumed uncorrelated. This model can be easily
expanded to include morerandom effects such asblock and plot
effects (see, for example, Apiolaza et al. 2000).

Thismultiple-trait model for oneindividual isextendedto
the N individualsin the progeny test using Equation (2), but
nowy=[y;'y, ...y\N1.a=[a) & ... a]"ande=[e;' &)
... ey]". Inaddition, X = [X' X, ... X('and z=3 ; Z;,
where Y ; representsdirect sum operation. Conseguently, G
=A\UGpand R = y ; R;, Where [ denotes direct product
[see Appendix 1 and Searle 1982 (Chapter 10) for adetailed
description of 3, and [ operations] and R; is the residual
covariance matrix for each individual. Hence, the expected
value and dispersion matrices are;

Ely]=Xb

Vafa]=G =Ay O0G,,ValeF R=Y R,
and )
Var[y]=2Gz' +R

Oncethemodel isdefined, theanalysisof themultivariate
expression of Equations (4) and (5) is developed in ways
similar to the univariate estimation of variance parameters
and to predict breeding values.

Analysis of Longitudinal Data:
Covariance Structures

The use of multivariate models with unstructured covari-
ance matrices (i.e., not assuming any patterns) for the analy-

sis of m repeated measurements is an appropriate, but not
necessarily the best, option. Each of these covariance matri-
cesinvolvesthe estimation of m(m+ 1)/2 covariance compo-
nents. In comparison to a univariate analysis, the amount of
data on each subject increases by m, but the number of
covariance parameters to estimate increases by m(m + 1)/2.
Therefore the information available to estimate each param-
eter isin some sense reduced, as may bethe“quality” of the
estimates. Modeling the covariance structures reduces the
number of parameters to estimate and can provide explana-
tion for patterns of observed correlation among the longitu-
dinal data.

Covariance matrices (M) can generally be expressed asa
symmetric correlation matrix (C) with typical element ik
pre- and post-multiplied by adiagonal matrix (S) containing
the square root of the variance components for each trait
(measure). Hence:

M=SCS 9)
%’1 0 OB El o - rlmg
S:D(_) 0.2 (_)DandC:Df?l 1 r2.m|:|

0 . g 0O: : 010

O : - g O : EI( )
g0 0 - op{ B e - 10

This notation simplifies the explanation of the structures
used for modeling the covariance matrices. We typically
allow heterogeneous variances in time, so S is a diagona
matrix with al diagonal elements different. In case of stable
processes, or stahilized through transformation to ahomoge-
neous variance, S=1 o, adiagonal with identical elements.
Below weprovidealist of somecommon, but not exhaustive,
structuresfor C, where scal ars denoted with different letters
represent different correl ations. Each structureisfollowed by
the relationship between successive predicted breeding val-
ues. Whilestructurescanbeappliedto G and R, inthisarticle
we emphasize modeling the additive genetic covariance
matrix, while keeping the residual s matrix unstructured. The
only exceptions are the repeatability and uncorrelated mod-
els. All examples consider four measurements.

Unstructured (US)

Theunstructured model can beexpressedasM =SC, S,
where C ;5 have no restrictions except for being positive
definite and with elements between —1 and 1. This is the
choicewhen working with different variables. Itsmain prob-
lemwithlongitudinal dataistherisk of overparameterization,
with poorly estimated parameters and maybe unnecessary
computational requirements.

%L a b c%

c @ 1 d eg

us %’ d 1 f% (12)
£ e f 19

The breeding value of individual i observed at time j
(aij) is afunction of genesinvolved in expression at time
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j —k (g j - 1) blus the effect of genes acting in the new
measurement ((Xj), which are considered independent of

the past measurement:
& = Pk & jx (12)

where Pik is the additive genetic correlation between mea-
suresjand k, andj —k = 0.

Banded Correlations (BC)

The banded correl ations model accommodates the exist-
ence of identical correlations for measurements with the
same time between expressions (lag). ThusM = S Cg S,
with {a, d, f} - g, {b, €} - h, and {c} —i respectively from
Equation (11) (C ;9. If the lag between all measures is the
same, the correlation matrix presents bands with the same
value [see Equation (13)].

3an i

c.. =@ 1 0 ho

*hog 1o (13)
H h g 1

The relationship between successive breeding values is
similar to Equation (12), but p isthesamefor all observations
separated by alag k:

& = P jy t O (14)

This assumption may not be applicable across different
growth stages, where development in 1 yr of, say, early
growth can be very different from that of 1 yr in mature
growth (due to ontogenetic effects).

Autoregressive (AR)

Rather than using a different correlation for each lag, the
autoregressive model postulates a mechanism where the
correlation between measurements j and k is ri=l. In this
model M =S C,g S, further reducing to 1 the number of
covariances to estimate.

O -t _fte=ts|  [ta—t| O
0O a a a
Qa“tz_tl‘ 1 a‘t:"_tz‘ a‘t“ _tz‘ 0
R I

a‘tzl_tz‘ a‘t4‘t3‘ 1 H

%‘\u-n\

Again, thebreeding valueof individual i observed ontime
j (aij) is afunction of genes acting at time j—1 (g j_1) plus
genes acting on the new measurement (a J-):

Qj = P, T A (16)

if thecorrelation (p) isafunction of auniquevalueandthelag
between the measurements, the rel ati onship between succes-
sive breeding values for individual i is:
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Q-1 =P t0a;
Qo =pPgj_zt+ A,
: (17)

Qj_k+1 =P G T Ay

and substituting every breeding value of Equation (17) inthe
preceding one we obtain:

1

aij = plj_klaij_k +Gj (18)

where o ;' represents genes acting on measurement j plus a
series of iag effects from previous innovation terms.

Theautoregression coefficient can have apower formula-
tion as p = e* 12 (Diggle 1988) allowing for analysis with
unequally spaced observations. Thismodel isappropriatefor
smooth changes of genetic correlations with time, and the
presence of smaller correlations at theinitial stagesof atrial
can sometimes be modeled changing the units of the time
scale(e.g., tonatural logarithm or squareroot). A generaliza-
tion of the autoregressive model is ante-dependence, where
the breeding valueisafunction of n previousbreeding values
(Gabriel 1962).

Repeatability (RE)

Thismodel considerslongitudinal data as expressions of
the same trait (under control of the same genes); that is, a
genetic correlation of 1 is assumed, with homogeneous
heritability on time, and equal environmental correlation
between all pairs of records. Thus, Gy = ogj and
R = oﬁ(l +pJ), WhereJisasquarematrix withall elements
equal to 1 and p/(1 + p) isthe correlation between residuals.
ThereforeM = SCpre S, withS=10,and Ce = J.

g 111
S 10
RE % 1% (19)
B 15

Asall rowsareidentica, G, issingular, impeding the use
of mixed model equations[Equation (4)] initsnormal form.
A solution for this problem is the regularly used alternative
“univariate” representation of the model:

N
N

y=Xb+Za+Wh+e (20)

that is, an extension of Equation (2) (univariate analysis)
whereh =[h; h, ... hy]" isavector of “permanent environ-
mental effects,” which takes into account the residual cova-
riance between measurements, and W an incidence matrix.
Additive genetic variance (G = ANog) and residuals vari-
ance (R = |gg) are likein the univariate case, while pheno-
typic variance now includes permanent environment vari-
ance:

Ely]=Xb

Valh]=H =lo2 and Valy] =ZGZ' +WHW'+R (21)



A common problemisscal edifference between measures.
However, thisdifference may be avoided using atransforma-
tion for stabilizing variance (e.g., logarithmic, Box-Cox,
etc.). Neverthel ess, with tree breeding experiments spanning
several years (even decades), the equal correlation assump-
tions are sometimes naive. In spite of this, the RE model
could be useful for some short-term experiments.

Uncorrelated (UC)

The uncorrelated model assumes that there is no genetic
and noresidual associ ation between successive observations.
ThusM =SC . S, where C o = I, anidentity matrix. This
is equivalent to univariate analysis by age, alowing the
calculation of heritabilities but not of correlations between
measures.

od
O
Un|
|
OD (22
15

o B O O

This model may be adequate when all trees are measured
at al times, but it is not appropriate in the presence of
selection (thinnings, mortality, etc.) whereby remainingindi-
vidualsare asel ected sampl e based on performanceat earlier
ages.

Random Regressions (RRf and RRr)

The phenotypic trgjectory of atrait (dependent on time)
can be expressed through a mathematical function tractable
in a mixed linear model framework, for example, using
polynomial regression, growth models, or cubic splines. A
general representation for the measurements of individual i
might be:

yi = (1) +f, (1) +fg () +&; (23)

where f(t), fai (t) and fei (t) represent possibly different
functionsmodeling fixed effects, additive genetic effectsand
residuals respectively; and g; is an error term. Functions can
be applied to al components of the phenotype (e.g., fixed
effects, tree, and residuals) or to specific elements (e.g., tree
only). Again, the emphasis is on modeling the additive
genetic covariance matrix (G), with random regressionsused
for a while other terms are considered unstructured and the
subindex for f(t) is dropped. If g = f(t) with t a vector of
times, rather than estimating one breeding value for each
assessment, the coefficients of a function that models the
trajectory are estimated. Consider, for purposes of illustra-
tion, an orthogonal polynomial function to model the breed-
ing value of individual i ontimej (aij):

a; = f(t)) =Agizo; +Ayzy A2 +... 4N Zy (24)

whereA ; aretherandom regression coefficients, z,; isthekth
orthogonal polynomial evaluated at agej,andn<m-21. Thus,
all breeding values of individual i can be represented as:

a=fO)=QA (25)

where A, =[Ayi Ay .. Ayl and Q; is an incidence matrix of

form:
Eizm Zy Zn E
_[Po2 Zi2 - Zp20
Q=g : o : O (26)
O : - i
@Om Zim o an@
Therefore, Equation (6) can be represented as:
Yi=Xib+ QA +g (27)
with
Var[Q; A] =Q; Ay Q) (28)

where A is the covariance matrix of the random coeffi-
cients (A,). Because different regression coefficients are
calculated for every individual (and these coefficientsare
considered as random effects), this model is called the
“random regressions model.” When the polynomial is of
maximum degree (m — 1), thereis afull fit (RRf), that is,
the function f(t) goes through all the points/measure-
ments. In this case, the estimatesusing f(t) are equivalent
to those using afull multivariate approach (see below). A
polynomial of order lower than m— 1 generates areduced
fit (RRr) and, in fact, is smoothing the covariance matrix.

Including polynomials evaluated at additional agesin Q;,
within the age range used to generate the function, interpo-
lates the appropriate covariances. Extrapolating covariances
outside the range used for constructing the function is pos-
sible; however, there are no provisions in the method to
ensure reliable prediction of the covariances.

Further details of these models can be found in Laird
and Ware (1982, RR); Quaas et al. (1984 p. 34, RE);
Jennrich and Schluchter (1986, US, BC, AR, RR, and UC);
Louis (1988, RR); Diggleet al. (1994, RR); Everitt (1995,
RR); Hand and Crowder (1996, US, AR, and RR); and Cnaan
et a. (1997, RR). Diggle et al. (1994, Chapter 5) and Hand
and Crowder (1996, Chapter 6) provide an extensive treat-
ment of the topic.

Relationship Between Unstructured and
Random Regression Models

Two linear models, m; and m,, are considered equivalent
when their expected values and variances are identical
(Henderson 1984, p. 6):

E[m] = E[my]
Var[my] = Var[m,] (29)

The equivalency between the US and full fit RR models
and the rel ationship between US and reduced fit RR models
will be illustrated with an example. Suppose a progeny test
was assessed four times (see Figure 1). We present a set of
observationsfor ageneric individual according to the model
in6and 7. Wehave no particul ar interest in the fixed effects,
which will be represented as X; b.
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Figure 1. Fitting four measurements using the Full-fit Random
Regression model (RRf) from Equation (32) (O ) and the Reduced-
fit Random Regression model (RRr) from Equation (34) (----). The
error in estimating the additive genetic value for measurement 3,
due to fitting a reduced model, is represented by ¢ ;.

Using a US multivariate approach [i.e., model Equations

(6) and (11), where & is the vector of additive values at
different measurements times|, we get:

Yi=X;b+Z;a+e,or

, g 4 o o ok,0 O

0 0 ooto gtg
D20 Xb+@ 10 ODEa.zD [&20
Yol o 0 1 ofa] e @0
BB P 0 0 1.8 BB

Using afull fit polynomial regression (RR) [i.e., model
Equation (27), where A; represents the regression coeffi-
cients, to model the additive genetic part] we have:

Yi=Xib+ QA +g,0r

E %01 Z 2Ipn Zslgg\mg I%B'llj
OVi2O_ Fo2 Z12 22 Z32D@\1||] @ZD

_X b+

%’usm %03 43 Zy 2335%2”] % (31)

BB Hou Zu Zu ZuHRs( @4@

Becauseapolynomial of degreen— 21 will passthroughall
n observations (Neter and Wasserman 1974, p. 276), the
product Q; A; on Equation (31) is:

NoiZop tA 1231 tA 52y tA 525 =&,
NoiZop T A1iZ1p A 525 +A 525 =8,
NoiZoz tA1iZi3 A 5iZp3 TN 5253 = a3 (32)
NoiZos TA1iZ14 A 525 FA 525, = a4,
that is also the result of the product Z; a; in Equation (30).
If Z; &, and Q; A; areidentical, so aretheir variances. The

expected valuesfor both Equations (30) and (31) are X; b.
Thus,
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E[US = E[RRA = X; b

Valug =ValRR| =Z; Gy Z;' + Ry =Q; \g Q' + R,
(33)

and the model sare equivalent. Moreover, random regression
coefficients can be estimated from the US model as
N\ =Q'Z,a =Qia;.

US| ng a reduced fit, for example a quadratic polynomial
(Figure 1), we have:

O

E %01 2 221 o *1D
OVi20_ o2 Z12 ZzzDD 'O

B Xb+ ,
%’.3 0 %03 413 Iy D%l %ﬁ- D 35 (34)
Bisd Fou Ziu Zs{ % H

Because the reduced fit polynomial will not in general fit
the four observations perfectly we have that:

NoiZor * A3z FA 52y HE =3y
NoiZop ¥ A1iZip +A 52y +Ej, =8,
NoiZos ¥ A5iziz +A 525 +E i3 =85 (35)

NoiZog FA1iZig tA 52 Y€1, =8y

whereeg; = [€;; &5 €3 &4" isthe vector containing the errors
due to fitting a reduced regression model for the additive
genetic effects. Thus, e? =g +¢g-In other words, the error
of the full fit model (g) plus the error due to the regression
model (g;) compound a new error eT- Figure 1 depicts the
difference between fitting afull-fit and areduced-fit random
regression model, and the graphical meaning of &;.

Theexpected valueof themodel isstill thesame (X, b), but
the dispersion matrices are now:

= QiAOQi' +Ry
(36)

Va(\;1= A, Vale]] =Ry and Valy;

Longitudinal Data and Covariance
Functions (CF)

Covariance functions are another approach for dealing
with longitudinal data. Meyer (1998) points out the simi-
larity between covariance functions and the use of an RR
model. A covariance function U(x;,X,) is a function that
describes the covariance between the measures of aran-
domly chosen individual at x; and the same individual at
X5 (Kirkpatrick and Heckman 1989, Kirkpatrick et al.
1990, Meyer and Hill 1997). Covariance functions were
designed to deal with characters where the genetic effects
can be expressed as a function dependent on continuous
scales (for example, x. istime or distance), like longitudi-
nal data, morphological shape, and norms of reaction
(Kirkpatrick and Heckman 1989). Thus, they are the con-
tinuous (“infinite-dimensional”) equivalent to covariance
matrices.



Kirkpatrick et al. (1990) presented a methodology using
orthogonal polynomials to estimate covariance functions
fromacovariancematrix, later extended by Kirkpatrick et al.
(1994). Essentialy, themethod hastwo steps. Inthefirst step,
aUS model is used to estimate a covariance matrix. In the
second step, the covariance function is truncated to the
number of dimensions (or areduced order) representedinthe
covariance matrix used to fit the function. If ® isamatrix of
orthogonal polynomials (Legendre polynomials in
Kirkpatrick’s work) with columns @, G, is a covariance
matrix (e.g., additive genetic), and Uy, is the covariance
matrix of the polynomial coefficients then:

Mo @ - @ E

o = %Poz A - Q2
A g (37)

%pOm @m - @m0
O(xy%) = % Z; Ugj @(x) (%) (38)

where U, = ®71G,@' for full fit, and it is estimated using
generalized least squares when using reduced fit (see
Kirkpatrick et al. 1990 for details). Full fit and reduced fit
have the same meaning as in random regressions. Note that
Q; [Equation (26)] and @ [Equation (37)] areequivalentif the
samefunctionisused to model the change of breeding values
with time.

Theestimation of covariancefunctionsusing Kirkpatrick’s
method relies on a previously estimated covariance matrix.
Therefore it requires al individuals measured on a limited
number of fixed ages, whileageneral specification of RR [as
in Equation (23)] allows data spread over the trgjectory
without assumptions or restrictions for ages (van der Werf
and Schaeffer 1997). Covariance functions permit interpola-
tion and extrapolation of covariancesin the sameway asthe
RR model.

Considering the definition of covariance function [Equa-
tion (38) using U, = ®1Gy@'], the RR model generates
one of form Q;A,Q;". Nevertheless, the procedures are not
identical. Although in RR fitting of arandom effect depends
on thefit of the other random effects[Equation (5) is solved
for all variance components simultaneously], Kirkpatrick’s
method does not take into account other random effects (it
considers only G, and residuals are not “moved” into R, to
form R*O). Other modelspartially providethefunctionality of
a covariance function. For example, the AR model (espe-
cially using a power formulation) can be used to span a
correlation structure at any combination of times, but not to
estimatethevariancesat each age, havingthenamorelimited
application.

Model Selection

A common approach to model selection is based on the
likelihood ratio test (LRT), which asymptotically (i.e., with
an “unspecified suitably large” number of observations),
follows a chi-square distribution (Jones 1993). Two nested

models(onemodel isareducedversion of theother), onewith
p independently adjusted parameters [rank(X) + number of
covariance components] with log-likelihood Log L, and the
other withp + g parameterswithlog-likelihood Log Lp+q, are
compared using:

LRT = 2(LogLp+q-LogLp) ~ X3 (39)

Thenull hypothesisisthat both model sarethe same (extra
parameters do not improve the fit). Including more param-
eters in the model always increases or at least keeps the
likelihood value; thus this test does not favor parsimonious
models. There are severa tests that take into account the
number of parametersincluded in the model (see Jones 1993
for examples). One such test is Akaike' s Information Crite-
rion (AIC, Akaike 1974, Wada and Kashiwagi 1990), which
is.

AIC = —-2LlogL + 2p (40)

where LogL isthe log-likelihood and p the number of inde-
pendently fitted parameters included in the model. The best
model has the lowest value of AIC. If all models under
comparison include the sasmefixed effectsthereisno need to
consider rank (X) in p, because it will not affect the differ-
enceson AIC.

Often the log-likelihood reported by statistical packages
does not include the constant term [con in Equation (5)]
because LogL 00 LogL without con. Nevertheless, when
comparing nonnested models (models with different distri-
butional assumptions) the log-likelihood must use the com-
plete density function, including all constants not involving
the covariance parameters (Lindsey and Jones 1998).

Numerical Example

Theuse of different modelsisillustrated with basic wood
density data(in kg/m3) from breast-height increment cores of
radiata pine (Pinusradiata D. Don) sampled from 28-yr-old
open-pollinated families of the “268" series growing in
KaingaroaForest, New Zealand (Shelbourneand L ow 1980).
The data set consists of 50 open-pollinated families with 5
blocksand 1 or 2 samplesper block, i.e., familieswith 9 or 10
individualstotaling 424 trees. Each core contains between 20
and 28 measuresof diameter at successiveringsfromthepith.
Weighted basic density at age | (Wbdj) iscaculated as:

]
bd A,

wod; == ——
J J (41)
A

i
1=1

where bd, is the average basic density of ring i, and 4, isthe
areaof ringi. Only weighted basic densitiesat ages5, 10, 15,
and 20 are considered in this example.

The general model utilized in the analyses is from
Equations (6) to (8), where means per age are the only
fixed effects. While some of the structures might not be
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Table 1. Log-likelihood (LogL) and Akaike’s information criterion
(AIC) for the Unstructured (US), Full-fit Random Regressions
(RRf), Banded Correlations (BC), Autoregressive (AR), Repeat-
ability (RE), Uncorrelated (UC), and Reduced-fit Random Regres-
sions (RRr) models.

Parameters Log-likelihood AIC

Model (Gt Ry =p) (Logl) (=2 LogL +2 p)
US and RRf 10+ 10 —4,886.90 9,813.80

BC 7+ 10 —4,891.03 9,816.06

AR 5+10 —4,892.71 9,815.42

RE 1+2 —6,327.04 12,660.08

ucC 4+4 —6,715.32 13,446.64

RRr 6+10 —4,888.27 9,808.54

biologically plausible for aweighted density dataset (e.g.,
RE over alarge number of years), we consider it appropri-
ate to illustrate the effects of such models on the estima-
tion of genetic parameters, and we include them in the
analyses. All modelsarefitted using ASReml (Gilmour et
al. 1998). Preliminary analyses considered blocks as ran-
dom effects, but these were not significant and therefore
excluded from subsequent models.

The log-likelihood ranged from —6715.02 for the UC
model to —4886.90 for the US model, while AIC ranged
from 9808.54 for the RR model to 13446.64 for the UC
model (see Table 1). The AR and BC models have almost
identical fitting but, considering AIC, the use of less
parameters than in the US model reduced log-likelihood
(Table1). The RRr model was considered the most appro-
priate since it gave both the lowest AIC and estimates of
genetic parameters closer to those of the US model (Table
2, Figure 2).

Thescale effect issmall, with phenotypic standard devia-
tion ranging between 26.9 kg/m3 (age 10) to 29.1 kg/m?3 (age
20). Thedatadid not require transformation, as most models
(except for RE) directly account for any heterogeneity of
variances.

Heritabilities for age (hjz) and genetic correlations be-
tween ages j and k (rjk) were estimated with the following
formulas, using corresponding elements from G, and R

2 _ i
hJ Y
0° +0
a; &
63
~ _ Jk
k5.5
a; Y ay

Table 2 presents genetic parameters estimates from the
different models. As expected, the US and RRf (fitting a
third-order orthogonal polynomial for each tree) models
produce identical estimates of genetic parameters. The RRr
model, which fits a second-order orthogonal polynomial for
eachtree, hasavery similar fitwithonly six parametersinthe
G, matrix.

In general, heritability estimates do not differ substan-
tially among the models; however, the estimates for ages 5
and 20 are depressed in the AR and BC models, respectively
(Table 2). This seemsto be caused by the large reduction of
the number of correlations estimated (especially withthe AR
model).
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Table 2. Genetic parameters estimated from Unstructured (US),
Full-fit Random Regressions (RRf), Banded Correlations (BC),
Autoregressive (AR), Repeatability (RE), Uncorrelated (UC), and
Reduced-fit Random Regressigns (RRr) models. Heritability (h?)
and phenotypic variance ( Gp) and residual correlations (r,,
below diagonal).

Age (yr)

Age (yr) W o) 5 10 15
US and RRf

5 0.731 792.411

10 0.818  724.238  0.764

15 0.805  782.797  0.537  0.837

20 0.840  847.901 0278 0.578  0.879
BC

5 0.747  799.150

10 0.823 725560  0.595

15 0.759  776.628 0337  0.860

20 0.771 837.059  0.118 0.677 0.918
AR

5 0.678  792.432

10 0.815  723.823  0.673

15 0.786  780.333 0330  0.821

20 0.800  843.707  0.026 0.539  0.884
RE

5 0.567 1,052.468

10 0.567 1,052.468  0.180

15 0.567 1,052.468  0.180  0.180

20 0.567 1,052.468  0.180 0.180  0.180
uc

5 0.730  799.873

10 0.818  726.869 0

15 0.802  783.924 0 0

20 0.815  847.186 0 0 0
RRr

5 0.743  795.181

10 0.802  721.986  0.713

15 0.818  784.827  0.492 0.848

20 0.842  848.130 0210  0.607  0.869

@ Heritability and phenotypic variance values apply across ages.

Theresultsfor theUSand RRf additivegenetic correlation
structures are identical (Figure 2). The correlations between
density at age 5 and later measurements are smaller than the
correlations between successive measurements.

51 0.941 0.881 0.846%
Co= _[0941 1 0987 0.9680
us TRt @.881 0987 1 0.9935

D.846 0968 0993 1 A

TheBC model constrainscorrelationswiththesamelagto
be identical, estimating three correlations instead of six.
Thence{0.941,0.987,0.993} -, 0.988,{0.881,0.968} - 0.958
and{0.846} - 0.917fromtheC 5 (Figure2). Thebanded BC
model wasnot well suited to represent the correl ations of age
5 with later measurements, overestimating the first column
by values ranging from 0.047 to 0.077.

51 0.983 0.958 0.9175
0988 1 0988 0.958
_%).958 0988 1 0.9885

0917 0958 0988 1 [

CBC
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Figure 2. Contour plots of the correlation structures from the numerical example: US: unstructured, RRf: random
regressions full fit (third degree polynomial), BC: banded correlations, AR: autoregressive, RRr: random regressions
reduced fit (second degree polynomial), and CF: covariance function (second degree polynomial). Contour lines are
labeled every 0.02 for all models except for the AR model, which is labeled every 0.005.

pressed as 0.988"09 (age,) -log (age;)| Again the assumptions of
themodel aretoo restrictive, becauseauniqueautoregression
coefficient can not represent thelower correlation of thefirst
measure with later ones. As a result all correlations are

The AR model further reduces the number of parameters
to be estimated. To achieve convergence it was necessary to
usetimein anatural logarithm scale, to accommodate onto-
genetic effects. Thus the autocorrelation coefficient is ex-
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overestimated. The spacing of the contour linesin Figure 2
wasaccordingly decreased from 0.020t0 0.005for thismodel
to improve presentation of results. The poor performance of
the AR correlation matrix contrast with the results for tree
height (m) obtained by Apiolaza et al. (2000) where it was
selected as the best model.

01 0992 0987 0.983U

0 0
_992 1 0895 09920
AR %).987 0995 1 0.997%

0.983 0992 0997 1

By definition the additive correlations are restricted to
Cre =J [Equation (17)] and C, =1 [Equation (17)] for the
RE and UC models, respectively. The RRr model (reduction
from full-fit order 3 to order 2) appearsto be lessrestrictive
thantheBC, AR, RE, and UC modelsand closely followsthe
resultsfromthe USmodel (Figure2). Thisresult also departs
from the poor representation of genetic parameters for tree
height reported by Apiolazaet al. (2000) for RRr models.

01 0955 0.890 0.859U
955 1 0.984 0.965Q
_g).sgo 0984 1 0.994%

D.859 0965 0994 1 [

RRr

Residual correlation matrices of the US and RRr models
were similar, as were the residual matrices of BC and AR
(Table 2). Constraints in the UC and RE models rendered
their residual correlation matrices distinct.

Results from covariance structures and covariance func-
tions are not directly comparable, and we only present the
additivegeneticcorrelationmatrix fromtheformer approach.
A covariance function, based on Legendre polynomials, is
fitted to the G, matrix from the US structure using a
Mathematica notebook (Kirkpatrick et al. 1990).

01 0957 0.893 0.8620

0 0
0957 1 0984 09650
cF g).sgs 0984 1 0.9945

@.862 0965 0994 1 7

The results from the CF model are very similar to those
from the US and RRf models, but require an estimate of the
USstructureasstarting values. Again, fitting asecond degree
polynomial (i.e., six parameters for G,) appears to be an
appropriate approximation to the resultsfrom the US model.

Final Remarks

The UC model has been applied in forestry, albeit implic-
itly, for studying changes of heritability with time. Covari-
ances havetypically been estimated by univariate analysisof
the sums of pairs of measures, using the result Cov(x,y) =
[Cov(x +y) — Var(x) — Var(y)]/2, but this does not allow
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unbiased use of datawith missing observations such asoccur
from thinnings or mortality. The use of full multivariate
evaluation takes into account the existence of selection or
patterns of missing information; thus it provides unbiased
minimum variance estimates of breeding values.

Breeders must be aware of large differencesin the degree
of parsimony, i.e., economy on the number of parametersto
be estimated, and number and type of assumptions, involved
in the different models presented. Hence, model selection
should also consider biological plausibility of these assump-
tions. When there are only a few measurements, the US
model (with no restricting assumption about the biological
model) provides agood fit, but when increasing the number
of measurements the probability of obtaining non-positive
definite resultsincreases. Using bending to obtain apositive
definite matrix from the US model decreases the log-likeli-
hood value, which may be lower than the ones coming from
structured models (e.g., Apiolazaet al. 2000). The numerical
exampleillustratesthat it is necessary to find a compromise
where the gains of using structures outweigh any biasdueto
model dependency. For example, the AR structure model
involves the estimation of five parameters less than the US
model, and reduces log-likelihood by only 5.8 units (for an
AlCdifferenceof 1.6) whileprovidingapoor fit. Ontheother
hand, the RR model requiresfour parameterslessthantheUS
model, reduceslog-likelihood 1.4 units(with an AIC smaller
by 5.3 units), and provides an almost perfect fit.

Different covariance structures have been compared in
sheep breeding (Coelli et al. 1998 using US, BC, AR, and RE
for fleece weight and fiber diameter) and tree breeding
(Apiolazaeta.2000usingUS, BC, AR, RR, and UCfor total
height). These papersshow that different traitsneed different
models. Applications of RR are now popular in animal
breeding, either using orthogonal polynomials (Meyer 1998,
van der Werf et al. 1998), growth models (Jamrozik et a.
1997) or cubic splines (White et al. 1999). As pointed out by
vander Werf et al. (1998), random regressions are an appeal -
ing approach, but in practice, covariance matrices estimated
using the method can deviate significantly from those esti-
mated using univariate or bivariate analyses. This behavior
seems associated with strong reductions on the number of
components (i.e., order of the polynomial compared to num-
ber of measures).

Thefact that two models have similar AIC does not mean
that their covariance matrices have similar “shape” (see
Figure 2 and Apiolazaet al. 2000, as examples). Thus, while
the objective is to reduce the number of parameters to be
estimated, simultaneously the shape of the covariance matri-
ces must be kept. Shaw (1991) suggests using maximum
likelihood approach for the comparison of genetic covariance
matrices, while Goodnight and Schwartz (1997) propose a
bootstrap method.

Fitting multivariatemodelsiscertainly more complex and
computationally demanding than using either a univariate
approach (UC) or aseries of bivariate analyses. On the other
hand, it provides a description of the changes of genetic
parameterswith time. Thisarticleand Apiolazaet al. (2000)
present both theory and examplesfor further optimization of



the breeding programs, considering number and timing of
measurements of progeny tests, early selection, and an over-
all better understanding of the genetic control of traitssubject
to selection. Finaly, it is necessary to point out that models
of longitudinal datashould consider any other effects present
in the experiment (e.g., block, plots, etc.) in case they are
relevant to the estimation of covariance components.
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APPENDIX 1. Direct Sum and Direct Product

The direct sum of n matrices A, is defined as:

D\l o ... oUO
D0 A OB
|:| “ee .
2 =0 :2 . O diagfA} (A1)
O : S
500 - A

Therefore, adirect sum of matrices creates ablock diago-
nal matrix with the matrices being added in the diagonal and
all off-diagonal elements equal to 0. Submatrices may be of
different orders.

Example:
4 2 o oOd
0 0
4 20 5 6 B8 4 0 0
O "md O 0
340 g eg PO 6]
M 0 7 83
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Thedirect product of two matricesA ,, , and B, , creates
amatrix where each submatrix isB multiplied by an element
of A:

(h,.B --- a..BU
ot . Mo
A B

pxq i

0 P E (A2)
%"plB 8B
where a; isthe element of A from row i and column j.

Example:

by s0 4 5 8 10 12 150
[123]DD 0= O 0
B 78 B 7 12 14 18 217



