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Abstract
Genetic evaluation aims to identify genotypes with high empirical breed-
ing values (EBVs) for selection as parents. In this study, 2157 potato
genotypes were evaluated for tuber yield using 8 years of early-stage
trial data collected from a potato breeding programme. Using linear
mixed models, spatial parameters to target greater control of localised
spatial heterogeneity within trials were estimated and variance models to
account for across-trial genetic heterogeneity were tested. When spatial
components improved model fit, correlations of errors were mostly small
and negative for marketable tuber yield (MTY) and total tuber yield
(TTY), suggesting the presence of interplot competition in some years.
For the analysis of multi-environment trials, a variance model with a
simple correlation structure (with heterogeneous variances) was the most
favourable variance structure fitted for TTY and PTY (per cent market-
able yield). There was very little difference in model fit when comparing
a factor analytic structure of order 2 (FA2) with either FA1 or simple
correlation structures for MTY, indicating that simple variance models
may be preferable for early-stage genetic evaluation of potato yield.

Key words: empirical breeding values — genotype-by-
environment — multi-environment trials — potato selection —
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Potato tuber yield is an important selection criterion and contrib-
utes to maximising the (implicit) economic objective in potato
breeding programmes. It is typical that information on tuber yield
under either a phenotypic or ‘genotypic’ (progeny test) selection
strategy is not available until at least the second clonal stage of a
breeding scheme, when there are enough tubers available for
establishing formal replicated trials. Under a traditional pheno-
typic recurrent selection strategy, the use of a promising parental
candidate will often be delayed until the breeder has enough
confidence in its individual ‘production worth’ after further years
of extensive field trials. Furthermore, the candidate’s ‘breeding
worth’ is not necessarily formally evaluated from the performance
of its progeny when this information eventually comes to hand.
Evaluation of potato genotypes may therefore fail to take advan-
tage of all available information in multi-environment trial (MET)
data, which might improve the precision of breeding value esti-
mation in the early stages of testing; trial analyses often assume
the independence of genotypes both within and across trials, but
these assumptions are not realistic (Smith et al. 2005). Genetic
evaluation of yield and other traits using trial data and ancestry
information can provide predictions of breeding and genotype
values from informal mating designs (e.g. Crossa et al. 2006,
Oakey et al. 2006, 2007, Kelly et al. 2009). Furthermore,

observations that the residuals of neighbouring plots in field trials
are often more alike than those of non-neighbours have led to the
development of a number of statistical approaches to deal with
this localised trial heterogeneity that augment standard blocking
in trial designs (e.g. Gleeson 1997, Edmondson 2004).
For genetic evaluation, different variance structures can be set

up within a mixed model to accommodate the genetic (co)vari-
ances that exist among trials or ‘environments’ in MET data (e.g.
Smith et al. 2001, Crossa et al. 2006, Kelly et al. 2007, Meyer
2009), allowing varying degrees of complexity to be modelled.
Trial evaluation may be enhanced, for example, by fitting a
homogeneous covariance structure that models different within-
trial variances and the same genetic correlation between trials.
This structure may be relatively simple to fit but may not be rea-
sonable when trials are performed over diverse environments,
and the assumed homogeneous genetic correlation structure does
not adequately deal with the genetic heterogeneity that may exist.
The most general form is an unstructured (US) covariance matrix,
which models both heterogeneity of trial variance and different
covariances for each pairwise combination of trials, but is recog-
nised as computationally difficult to fit. An alternative is the fac-
tor analytic (FA) model (Piepho 1998, Smith et al. 2001). To
simplify the calculations, the FA approach attempts to confine
the genotype-by-environment (G9E) interaction effects into a
small number of components (unobserved latent variables) that
aim to explain most of the interaction and in this respect is analo-
gous to ordination methods previously developed to study G9E,
such as the additive main effects and multiplicative interaction
(AMMI) model (Gauch and Zobel 1988, Crossa et al. 1991).
The general aim of this study was to identify an appropriate

genetic evaluation model for analysing MET potato yield data
for early-stage selection in a potato breeding programme. The
study used 21 trials from 8 years of field data, which included
2157 genotypes, from the early-stage selection trials of The New
Zealand Institute for Plant & Food Research (PFR) potato breed-
ing programme. Spatial models were investigated for greater
control of local-scale heterogeneity within potato field trials, and
different variance structures were modelled to account for
across-trial heterogeneity of MET field data.

Materials and Methods
Data: Trials were performed over a number of years (1999–2003, 2006–
2007 and 2012) mostly at Pukekohe, South Auckland (37°.120S
174°.520E, 141 m asl) but with two trials in Palmerston North,
Manawatu (40°.200S 175°.280E, 30 m asl). The 21 trials were designed
as early-clonal stage two, three and four (C2, C3 and C4, respectively)
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‘early-main’ (EM) crop and ‘main’ (MN) crop yield trials. Early-main
crop trials were planted in mid to late September and harvested in late
February, approximately 150 days after planting. Main crop trials were
planted in early November and harvested in mid May, with weather
conditions sometimes delaying harvest into June. C2 trials were treated
as early-main crop trials. Selected genotypes from the C2 stage were
entered into main crop (Manawatu: MW) and early-main and main crop
(Pukekohe: PK) trials at the C3 and C4 stages. Each trial comprised a
rectangular array of rows by columns, typically of 60–90 genotypes
replicated twice, designed as a resolvable latinised row-column with
CycDesigN v4.0 (CycSoftware 2009) and previous versions of the trial
design software. Each plot was made up of 12 tubers in total, planted in
a six by two arrangement, with a width of 1.55 m and a length of 2.0 m.
Spacing between neighbouring plots on the shorter plot side was 0.58 m
and on the longer plot side was 0.77 m. Plot yield was recorded at
harvest as both a total tuber yield (TTY) and a marketable tuber yield
(MTY) and converted to t ha�1 (metric tonnes per hectare) for analyses.
MTY, the trait of most interest, was the saleable (graded) yield after
undersized (<80 g), and defective tubers had been removed. Yield was
also expressed as the percentage marketable fraction of the total yield
(PTY), and logit transformed so that the response used for analysis was
ln(p/(1-p)), where p is the proportion of MTY to TTY.

TTY, MTY and PTY were analysed in 21 early-stage potato breeding
trials for the estimation of variance components and spatial parameters.
Fifteen of these trials (1999–2003) showed reasonable concurrence of
genotypes across both trials years (Table 1). This representative series of
early-stage trials were therefore used to test different variance structures to
account for trial heterogeneity and to estimate breeding values for potato
yield for both (1050) tested genotypes and all genotypes in the pedigree.

Single-trial analysis: Single trials were analysed to estimate variance
components for each trial, as represented by a general form of the linear
mixed model:

y ¼ 1mþ Z1bþ Z2gþ e;

where y is the n 9 1 vector of yield observations, m is the overall trial
mean as a fixed effect, b ~ N(0, Ir2b) and g ~ N(0, Ir2g) are q 9 1 and
w 9 1 vectors that represent random (non-genetic) design factors, for
example replicate/row/column and genotypic effects, respectively, and e
~ N(0, Ir2e ) is the n 9 1 vector of random error terms. Z1 (n 9 q) and
Z2 (n 9 w) are known incidence matrices of the random effects (trial
design and genetic effects), and I are the relevant q 9 q, w 9 w or
n 9 n identity matrices.

A randomisation-based approach (the base model) was first used in
analyses to reflect the experimental design. This included the indepen-
dent row and column effects, respecting the latinisation of the trials, and
the complete replicate effects if necessary. The base model was then
compared with an extended row 9 column model that included random
row and column effects, but was augmented by row and/or column spa-
tial correlation parameters as an attempt to better describe localised heter-
ogeneity. A separable autoregressive process of order one (AR1) has
previously been shown to provide a suitable variance structure for local
spatial trend in annual crop evaluation trials (Gilmour et al. 1997, Smith
et al. 2001) and, in general, compare well with alternative linear variance
models (M€uller et al. 2010). Following Gilmour et al. (1997) and Smith
et al. (2001), spatial analysis, e, was decomposed into spatially depen-
dent and spatially independent errors. The following matrix shows the

pattern of spatially dependent errors, modelled as the AR1 correlation
coefficients (q) between plots in the same ordered column or row (q) of
size n:

AR1 ðqqÞ ¼

1 qq q2q . . . qn�1
q

qq 1 qq � � � ..
.
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.

..

. ..
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This is generalised to give the correlation coefficient between plots
not located in the same row or in the same column as qji�i0 j

r qjj�j0j
c for

plots separated by |i-i0 | rows and |j-j 0 | columns from the direct product
AR1 ⊗ AR1. The best fitting model was selected as the preferred model
on the basis of the Akaike information criterion (AIC) goodness-of-fit
test: AIC = �2(logl – Np), where logl is the REML estimate of the log-
likelihood and Np is a penalty term representing the number of variance
parameters fitted. Smaller values of AIC represented a better fitting
model. The model was then revised with any large-scale field trend
(large-scale dependence or global trend in the mean of errors) present
across rows and/or columns accounted for by either fitting fixed linear or
polynomial regressions (Gilmour et al. 1997), or fixed linear regressions
and cubic smoothing splines (Verbyla et al. 1999) to the spatial coordi-
nates. From the inspection of residual variograms, global trends were
detected by non-stationarity and fixed linear and polynomial global terms
were tested using approximate incremental F-tests based on Wald statis-
tics, with non-significant fixed regression terms sequentially dropped
from the model. Splines were tested with the AIC. An extended model
was therefore considered as a model that included localised spatial error
components and/or global field trends, as well as row and column block
effects.

The modelling procedures then incorporated the pedigree. Models
were tested using an ‘individual plant’ model, with Ir2g replaced by Ar2a,
the variance–covariance matrix of the additive genetic effects (breeding
values), where A as the numerator relationship matrix that provides the
between-genotype relationship as two times the coefficient of coancestry.
Empirical breeding values (EBVs) were obtained from the BLUPs of
genotype effects, (e.g. Smith et al. 2005, p.458). As variance components
were unknown, empirical breeding values resulted from applying vari-
ance components in the mixed model equations that were estimated from
the data, thus giving empirical BLUEs (best linear unbiased estimators)
of fixed effects and empirical BLUPs of random effects. The changes in
ranking using Spearman’s rank correlations for all tested genotypes and
the percentage concurrence of genotypes selected between the extended
and base models (when the top 10 per cent of genotypes ranked on EBV
were selected from each analysis) were also measured.

Variance models for MET analysis: The single-trial models were then
expanded into a multivariate MET analysis by analysing 15 trials of
yield observations (y1,y2,. . .y15) between 1999 and 2003. These trials
were used to represent data obtained from early-stage selection trials,
providing an initial opportunity for a breeder to obtain breeding values
for yield of newly tested parents. Therefore, all trials after 2003 were
excluded from analysis (trial PK-EM-00 was excluded, as only a small
number of genotypes in this trial were shared with other trials), with data
vectors and design matrices constructed as follows:

y1
y2

..

.

y15

2
66664

3
77775

¼

11m2

12m2

..

.

115m15

2
66664

3
77775
þ

Z1 0 � � � 0

0 Z12 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Z115

2
66664

3
77775

b1
b2

..

.

b15

2
66664

3
77775

þ

Z21 0 � � � 0

0 Z22 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Z215

2
66664

3
77775

a1
a2

..

.

a15

2
66664

3
77775

þ

e1
e2

..

.

e15

2
66664

3
77775

Table 1: Concurrence of genotypes across 5 years of potato tuber yield
trials; diagonal entries are the number of genotypes tested in individual
years

1999 2000 2001 2002 2003

1999 462 114 33 19 8
2000 577 158 64 26
2001 233 101 55
2002 131 68
2003 89
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Random effects were assumed to follow a multivariate normal distri-
bution with means and variances defined by:

b
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e

0
@

1
A � N

0
0
0

0
@

1
A;

B0 � Ib 0 0
0 G0 � A 0
0 0 R� In

2
4

3
5

2
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where 0 are null matrices. B0, G0 and R are covariance matrices for
design factors, genetic (additive) and residual effects, respectively and ⊗
is the direct (Kronecker) product. The matrix B0 is a diagonal matrix of
(non-genetic) scaled identity matrices, and the variance–covariance struc-
ture of plot error effects R is assumed to be block diagonal. As each trial
(t) analysed comprised a rectangular array of rt rows by ct columns
(nt = rtct), local spatial trend, as described for the single-trial analyses
outlined previously, was specified through R as a separable AR1 process
(Gilmour et al. 1997, Smith et al. 2001) and included the ct 9 ct and rt
x rt correlation matrices associated with the coordinates of the column
and row layout of the trials, respectively, and the independent measure-
ment error variance for trial t.

The assumption was that the variance matrix for the additive genotype
effects has the separable form Ga = G0⊗A (e.g. Kelly et al. 2009),
where G0 is the matrix of additive variances and covariances between
environments and A is the covariance matrix between genotypes – the
numerator relationship matrix. Non-pedigree-based models were also
tested, so that the independent genotype effects were of the form Gg =
G0⊗I, where I in this particular case is an identity matrix of order g
(number of genotypes). Using the important non-genetic terms identified
from each single-trial analysis, four forms of the genetic variance matrix
were then compared with each other. G0 is the genetic variance matrix,
with the diagonal elements representing genetic variances for each trial
and the off-diagonal elements representing genetic covariances between
pairs of trials. Definitions of the forms of G0 tested are as follows:

SIMPLE: all variances within trials are assumed to be equal,
and all pairwise covariances between trials are assumed to be
independent and therefore zero:

G0 ¼
r2 0 � � � 0
0 r2 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � r2

2
664

3
775

DIAG: variances within trials are assumed to be different,
and all pairwise covariances between trials are assumed to be
zero:

G0 ¼
r21 0 � � � 0
0 r22 � � � 0

..

. ..
. . .
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0 0 � � � r2t

2
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CORH: variances within trials are assumed to be different,
and a constant non-zero correlation is assumed between all
pairwise combinations of trials:

G0 ¼
r21 q � � � q
q r22 � � � q

..

. ..
. . .

. ..
.

q q � � � r2t

2
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3
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where q represents a constant correlation of additive genetic
effects between trials.
FAk: factor analytic, a parsimonious approximation to the US
genetic (co)variance matrix (Piepho 1997, 1998, Smith et al.
2001), which identifies common factors (as the leading

principal components) and residuals, or ‘specific variances’,
and is given by: G0 = KK0 þ w; where K is a (t x k) matrix
of environmental loadings (or common factors):

K ¼
U11 U12 � � � U1k

U21 U22 � � � U2k

..

. ..
. . .

. ..
.

Ut1 Ut2 � � � U15k

2
6664

3
7775

and w is a (t x t) diagonal matrix of specific variances, with constraints
placed on the FA loadings for identifiability when k > 1.

Pedigree information was built from historic PFR field books, and a
publicly available pedigree database (van Berloo et al. 2007). R (R
Development Core Team 2012) was used for data analyses, with the
mixed models fitted using ASReml-R (Butler et al. 2009). AIC was used
as the test criterion for the various forms of G0. Variance–covariance
models were also compared by simulating the response to selection (Pie-
pho and M€ohring 2007). The best linear unbiased predictors (BLUPs) of
breeding values were obtained as the arithmetic average across environ-
ments of the predictions for each environment. With the assumption that
breeding values estimated from the data were the ‘true’ values, residuals
at each simulation round (1000 rounds) were resampled with replacement
and added to the fitted values. The simulated data were then re-analysed
to provide the BLUPs of breeding values, and at selection fraction s, the
top (ranked) s100% genotypes based on the simulated BLUPs, were
identified. The simulated BLUPs were then replaced with the true
BLUPs for the selected group of genotypes. The difference between the
true breeding value mean of the selected genotypes and the true mean of
the breeding population was considered to be the response to selection.

Results
Single-trial analysis

The distributions for MTY are illustrated in Fig. 1 and showed a
high degree of yield variability across trials.
Table 2 shows the fitted fixed effects, variance components

and spatial parameter estimates for the preferred (base or
extended) model from single-trial analyses for MTY (results not
tabulated for TTY and PTY). The proportion of additive (VA) to
phenotypic (total) variance (VP), a measure of narrow-sense her-
itabilities, for MTY and TTY (0.57–0.88) were high for all trials.
Heritability values, in general, were lower for PTY (ranging
from 0.27 to 0.69). Including an independent measurement error
component frequently resulted in convergence problems and was
therefore not included in analyses. Fixed linear regressions, in
either rows or columns or both, were included for over half of
all trials. A second-order polynomial regression (rows) was cho-
sen for trial PK-MN-01B for both TTY and MTY, which
appeared to account for curvature present across the trial, as
observed from the variogram of residuals. Random spline (row)
effects were found to be important in only one trial (MW-MN-
02) for TTY and MTY, but there was very little effect on the re-
ranking of genotype breeding values in this case. For TTY, the
percentage of common genotypes selected from both models was
greater than 80 for all trials with the exception of PK-C2-99A
(74%). The range of percentage concurrence of genotypes
selected across all 21 trials was greater for both MTY and PTY
than for TTY and included ranges of between 67 and 100 and
66 and 100 for MTY and PTY, respectively. AR1 correlation
coefficients, when considered to improve model fit, were gener-
ally small overall, that is mostly between �0.35 and +0.30, but
featured more for rows (the shorter plot to plot distance) than for
columns, in general. These spatial correlation estimates were all
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negative for TTY and also for MTY with the exception of two
trials (PK-C2-99B and PK-MN-00A). For PTY, there were
approximately equal numbers of positive and negative spatial
correlations. In exploratory analyses of TTY and MTY, examina-
tion of a null model (genotype + spatial) sometimes yielded
positive AR1 spatial correlation estimates but these were often

effectively reduced to zero when random row and column terms
were added. For example, for MTY in trial PK-C2-99A, positive
AR1 estimates for rows and columns of 0.46 and 0.42, respec-
tively, were reduced to 0.11 and 0 when random row and col-
umn terms were added. Spatial effects, when fitted, often had an
impact on the concurrence between base and extended models
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Fig. 1: Box plots of marketable tuber yield (MTY) (t/ha) from 21 early-stage potato breeding trials over 8 years. PK and MW trial prefixes refer to
Pukekohe and Manawatu locations, respectively. Mean yields are indicated by the filled circles

Table 2: Trial summary and REML estimates of variance components from models for marketable tuber yield (MTY, t/ha); fixed and random effects
and autoregressive (AR1) parameters, Spearman’s rank correlations (rho) and % concurrence of the top 10% of genotypes (ranked on empirical breed-
ing values (EBVs) of MTY) between base and extended models

Trial code Dimension Trial mean
Fixed

regressions

Error model Spatial correlation

rho % concurrence VA/VPr2a r2b r2r r2c splrow qr qc r2e

PK-C2-99A 40 9 16 36 lrow 201.0 9.1 12.0 34.7 0.95 81 0.78
PK-C2-99B 38 9 8 31 lrow lcol 121.3 2.9 0.25 43.7 0.93 73 0.72
PK-C2-00A 60 9 8 62 lrow 241.9 4.5 66.1 0.98 92 0.77
PK-C2-00B 14 9 8 55 280.8 2.2 2.5 �0.41 44.4 0.99 83 0.85
PK-EM-00 33 9 8 66 lcol 108.5 20.9 5.4 1.9 �0.20 37.8 0.97 67 0.62
PK-MN-00A 20 9 24 39 lrow 172.4 25.9 0.9 0.12 0.10 59.2 0.92 79 0.67
PK-MN-00B 14 9 8 43 143.3 5.2 2.3 44.4 ‡ ‡ 0.73
PK-EM-01 24 9 8 41 lrow 34.2 0.8 1.8 �0.26 23.2 0.97 83 0.57
PK-MN-01A 12 9 8 45 lrow lcol 182.9 46.5 0.98 80 0.80
PK-MN-01B 34 9 8 47 plrow 94.8 1.3 2.6 �0.14 �0.21 31.5 0.97 77 0.73
MW-MN-01 12 9 8 54 150.5 0.9 13.4 58.8 ‡ ‡ 0.67
PK-EM-02 24 9 12 38 lrow 181.5 2.3 1.4 37.2 0.99 100 0.82
PK-MN-02 14 9 8 34 lrow 171.7 �0.30 65.5 0.98 67 0.72
MW-MN-02 12 9 10 42 lrow 151.9 11.7 8.3 5.2 26.4 0.99 100 0.75
PK-EM-03 30 9 8 64 lrow lcol 160.6 1.6 1.4 �0.21 �0.31 53.1 0.98 88 0.74
PK-MN-03 18 9 8 49 94.4 12.1 �0.21 39.4 0.99 80 0.65
PK-C2-06A 54 9 10 39 lrow 109.2 0.5 14.3 �0.30 50.3 0.95 85 0.63
PK-C2-06B 26 9 10 41 lcol 122.2 6.3 3.1 �0.27 �0.29 34.1 0.98 83 0.74
PK-C2-07 34 9 20 44 lrow 58.0 5.2 2.9 21.3 0.99 88 0.66
PK-C2-12A 56 9 7 55 lcol 149.9 4.9 4.4 �0.37 �0.14 48.2 0.98 95 0.72
PK-C2-12B 54 9 7 56 154.8 0.7 2.2 87.5 ‡ ‡ 0.63

Trial mean is the observed mean tuber yield (t/ha), lrow and lcol represent a linear regression of the marketable yield on column or row number, respec-
tively; plrow represents a polynomial regression (of order 2); r2a is the additive genetic variance; r2b, r

2
r , r

2
c and splrow are the replicate, row and column

variances and random row splines, respectively, and represent the error model; qr and qc are the spatial correlation parameters; r2e is the residual error
variance; VA/VP is the proportion of additive genetic variance to the phenotypic variance – a measure of the narrow-sense heritability. ‡indicates that
the base model (no spatial error component or trend term) was the best fitting model.

4 M. F. PAGET , P . A. ALSPACH , J . A. D. ANDERSON e t a l .



for the top 10 per cent of genotypes selected, but agreement was
usually greater than 80%.

MET analysis and variance models

A summary of genetic variance models tested is presented in
Table 3. Based on AIC, there was a large improvement of
CORH and FAk variance structures over DIAG for all three
traits. For TTY and PTY, CORH was a small improvement over
both FA1 and FA2, with and without the pedigree fitted. The
trial-to-trial genetic correlation estimate from the CORH model
was 0.69 and 0.72 for TTY and PTY, respectively. For MTY
(with pedigree included), there was no difference in model fit
between FA1 and CORH, and for FA2, there was very little
improvement over both FA1 and CORH. For MTY, the trial-to-
trial genetic correlation estimate from the CORH model was
0.69. A heatmap plot of REML estimates of the additive genetic
correlations from the FA model for MTY is shown in Fig. 2.
There was a pattern of decreasing genetic correlations over time,
but there were no negative genetic correlations estimated
between any trials. For MTY, the lowest genetic correlations

were found between PK-MN-03 and the 1999–2000 trials. These
ranged from 0.06 to 0.39. For MTY, fitting a FA1 model
accounted for 71% of the variance, which increased to 77% with
a FA2 fit. There were problems with convergence for the FA3
models, as there were with attempts to fit an unstructured (US)
model to the data. Including a relationship matrix (pedigree) in
analyses improved model fit for TTY and MTY but not for PTY
(Table 3).
Empirical breeding values for tested genotypes predicted from

CORH, FA1 and FA2 were all highly correlated with each other,
with product-moment correlation coefficients between 0.98 and
0.99. There was a 93% concurrence of the top-ranked 10% of
selected genotypes between FA2 and FA1 and 91% between
FA2 and CORH. Figure 3 illustrates a shrinkage effect of MTY
when data were fitted to a FA2 model, with plots of EBVs
slightly departing from the line of unity between: (a) CORH and
FA2, and (b) FA1 and FA2. Simulations of the response to
selection over all levels of p (the proportion of the top-ranked
genotypes selected) were similar for CORH and FA1 but were
reduced for FA2 (Fig. 4), which also reflected the shrinkage of
empirical breeding values.

Table 3: Summary of genetic variance models (G0), number of genetic and total variance parameters (Np), Log-Likelihood (Log-L) and Akaike infor-
mation criterion (AIC) goodness-of-fit for total tuber yield (TTY), marketable tuber yield (MTY) and the fraction of marketable yield (PTY)

G0 structure

Np

TTY MTY PTY

Log-L AIC Log-L AIC Log-L AIC Log-L AIC Log-L AIC Log-L AIC

G0 total Ir2g Ar2a Ir2g Ar2a Ir2g Ar2a

SIMPLE 1 54 �10535 405 �10488 311 �10266 345 �10195 283 703 98 692 121
DIAG 15 68 �10499 362 �10411 246 �10189 298 �10159 239 710 113 699 135
CORH 16 69 �10375 115 �10317 0 �10063 49 �10041 4 767 0 764 6
FA1 30 83 �10366 126 �10307 8 �10056 81 �10027 4 778 7 773 16
FA2 44 97 �10349 121 �10289 2 �10051 82 �10010 0 785 22 779 34

AIC expressed as the difference from the best fitting model. Ir2g represents the independent genotypic variance (no pedigree fitted) and Ar2a represents
the pedigree-based genotypic variance (pedigree included).

Fig. 2: Genetic (additive)
correlation estimates of MTY
(marketable yield) between early-
stage potato selection trials from a
factor analytic structure of order 2
(FA2)
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Discussion
Spatial parameters and interplot competition

Local spatial trends were not a consistent feature of the potato
trials tested; extending models to include spatial effects did not
always improve model fit. By contrast, a number of studies in
other field crops, particularly cereals, have demonstrated consid-
erable advantages when including spatial terms (e.g. Gilmour
et al. 1997, Qiao et al. 2000) and are routinely included in ana-
lyses (e.g. Oakey et al. 2006, Beeck et al. 2010). Spatial analysis
has been considered as an alternative model to the traditional
analysis of complete or incomplete block designs, but based on
the comprehensive re-analysis of 53 lentil variety trials, Sarker
et al. (2001) recommended that block design methods could
often be enhanced but not replaced with spatial methods. M€uller
et al. (2010) also emphasised that prudence was probably the
best approach and advised that over-complication should be
avoided if possible. They found that a standard block model out-
performed a spatial model in most cases when analysing 293
sugar beet and 64 barley trials. In the present study, the blocking
designed for trials often appeared to deal adequately with local-
ised heterogeneity. However, the effort expended in checking for
spatial effects is small, compared with the effort and costs
involved in setting up and managing field trials. Spatial model-
ling should therefore be a consideration in potato evaluation to
account for possible field heterogeneity that may be caused by
localised factors within a trial site, such as soil chemical and
physical properties (e.g. Redulla et al. 2002, Po et al. 2010), and
which may be trait dependent (e.g. Dutkowski et al. 2006).
In trials, where spatial effects did appear to be important,

spatial correlation estimates were often small and mostly
negative (for TTY and MTY). Similarly, small negative spatial
correlations were also found by Stringer and Cullis (2002) in
sugarcane trials and were attributed to interplot (or intergeno-
type) competition. The use of larger interplot distances has been
suggested as a means to eliminate intergenotype competition in
breeders’ trials, but this implies a reduction in selection intensity

when the total trial area is fixed. Furthermore, bias due to
competitive ability may be replaced by bias due to the occur-
rence of a genotype 9 plant density interaction, whereby the
performance of genotypes is density dependent (Bos and Caligari
2008). Work by Connolly et al. (1993) identified competitive
effects of yield in single-row plots of potatoes, although these
effects were not ubiquitous over all trials tested. They found lit-
tle reranking of genotypes but there was shrinkage in the range
of yield estimates from high- and low-yielding plots and closer
agreement with pure-stand yields after accounting for competi-
tive effects.
In the presence of interplot competition, the AR1 model, as a

‘power’ model, implies a negative correlation between a plot and
its immediate neighbour as well as its third, fifth, etc.
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Fig. 3: Scatter plots of empirical breeding values (EBV) for marketable tuber yield (MTY) for: (a) EBVs predicted from heterogeneous variance–
homogeneous correlation model (CORH) and factor analytic structure FA2 models, and (b) EBVs predicted from FA1 and FA2 models
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Fig. 4: Simulated response to selection for marketable tuber yield
(MTY, t/ha) for variance models heterogeneous variance–homogeneous
correlation model (CORH), factor analytic structure FA1 and FA2
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neighbours. Fitting a negative correlation beyond the immediate
neighbour (along with positive correlations for the second,
fourth, etc. neighbours) does not seem a sensible model and
appears to have no biological justification. The weak negative
correlations found in the present study suggested that the correla-
tions beyond immediate neighbours were negligible and could
be reasonably overlooked. However, when interplot competition
is found to be strong, the fitting of an AR1 model may not be
appropriate and suggests that competition effects should be fitted
explicitly.

Genetic variance models

A heterogeneous variance and homogeneous correlation structure
(CORH) was found to be adequate for modelling the G9E
effects for TTY and PTY in the early-stage potato trials tested.
In a previous study, a simple model was also found to be suit-
able for the evaluation of resistance to tuber powdery scab dis-
ease from 12 years of potato field trials (Paget et al. 2014). For
MTY, there was only a small difference between the AIC of the
factor analytic model of order 2 (FA2) and both the FA1 and
CORH models. This suggested that the three models performed
equally well for the analysis of MTY. EBV plots between
CORH and FA2, and FA1 and FA2 (Fig. 3) indicated that the
FA2 model was possibly over fitting the data, and some degree
of bias was introduced into the process when moving from a
FA1 to a FA2 model. This was also reflected in the simulations
of the responses to selection in which both CORH and FA1
were similar over all levels of p. In comparison, responses were
reduced when selections on EBVs were based on simulations
from FA2 (Fig. 4). These results also suggested that environ-
ments, which were mainly temporal in the current study, that is
different years or growing seasons in the same location, were
relatively homogeneous for these data. The results are, of course,
presented in the context of early-stage potato selection trials
when the extent of testing over multiple locations is restricted
because of limited planting material. From model comparisons,
previous studies have found that FA variance structures were
suitable for both early- and late-stage evaluation trials (Smith
et al. 2001, Crossa et al. 2006, Kelly et al. 2007, Burgue~no
et al. 2011) in other crops. These studies were generally based
on MET information from more extensive trial data and, most
probably, more diverse environments, such as the extensive
international wheat trials of CIMMYT (Crossa et al. 2006).
From cross-validation studies, Burgue~no et al. (2011) found that
when G9E was not complex, that is a rescaling of performance
rather than a reranking of genotypes, both FA and simple non-
FA models gave good predictive ability. So and Edwards (2011)
found that because of poor genetic links of maize hybrids across
environments, modelling heterogeneous genotype covariances
did not improve predictions. Where access to suitable software
and experience is limited, evaluation by fitting a homogeneous
correlation structure may provide a more approachable method
to fit a genetic variance structure to MET data if appropriate.
The present study ignored the fitting of genotype main effects,

nesting genotypes within environments and obtaining the BLUPs
of breeding values as the arithmetic average across environments
of the predictions for each environment. This was considered to
be appropriate in the current context as genotypes (with limited
plant material available in the early-selection stages) were gener-
ally tested over multiple years rather than locations and that the
correlations between trials were positive and generally high. Fur-
ther, when genotype main effects were included in models, there

was little difference to the predictions, that is no reranking of
genotypes compared with those obtained when excluded (results
not shown). However, it is likely that the standard errors of the
predictions will be underestimated within a restricted inference
space. It is therefore emphasised that under different circum-
stances, the inclusion of genotype effects may be more appropri-
ate to broaden inference beyond the test environments. When
genotype main effects and G9E interaction effects are not sepa-
rated, it is difficult to monitor the behaviour of particular geno-
types in particular environments. Separation of these effects is
therefore useful for studying the specific adaptation of genotypes
to environments (Crossa et al. 2006).

Use of ancestry information

For pedigree-based BLUP of breeding values in plants and ani-
mals, it is recommended that all data that have been used in
selection decisions should be included in the evaluation for the
estimate of breeding values (Piepho and M€ohring 2006). An
assumption of the present analysis was that selection for yield
had been absent in the initial generations (seedling and C1). This
seemed reasonable, as selection for yield in the seedling or C1
generations is generally avoided. Previous work has considered
the low efficiency of potato selection in the early generations,
showing a poor association between selection for performance as
seedlings and performance in the C1 and later generations (e.g.
Anderson and Howard 1981, Brown et al. 1984, Brown and Cal-
igari 1986). PTY, however, was highly correlated with a general
impression score, which is a categorical preference score of
tubers given on a 1–9 scale by breeders, in the present study
(results not shown). General impression is a trait for which there
has been selection in the initial generations but the basis on
which these decisions were made was not recorded. Using a ped-
igree-based genotypic variance,VG (i.e. VG = Ar2A), as in the
present study, Piepho and M€ohring (2007) reported a better
model fit in some analyses when assuming independence
between genotypes (i.e.VG = Ir2G). It was suggested that selec-
tion has possibly taken place, and the information on which
selection had been based was not included in the analysis.
The additive relationship matrix A was based on disomic

inheritance. Under the assumptions of no past selection, double
reduction or inbreeding, the expected additive genetic covari-
ances both of diploid and tetraploid relatives are equivalent
(Lynch and Walsh 1998), which may or may not be appropriate
when dealing with autotetraploid potato. From our unpublished
genetic analysis of potato (tuber) starch data, there was very lit-
tle difference in the BLUPs when a diploid relationship matrix
was replaced with a tetrasomic-based relationship matrix that
was derived using the method of Kerr et al. (2012). This used a
double reduction coefficient of 0.1 which seemed reasonable,
based on the estimates of Haynes and Douches (1993) and Slater
et al. (2014). Similar results were also reported by Slater et al.
(2014). Fitting a non-additive component may reduce bias in
breeding value estimation, and variance estimates could be
exploited by selecting favourable parental combinations (Mrode
2005, Oakey et al. 2007). It may also be more appropriate for
clonal selection in cultivar development, that is selection of
individuals with a high total genetic value – a high ‘potential
production ability’ or ‘production worth’, which demands further
investigation in potato.
In conclusion, the use of historic field data provides an oppor-

tunity to explore statistical models that improve the methods and
precision of identifying new high-yielding genotypes for use as
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parents, as well as potential and worthy cultivars. In the analyses
of potato field trials, spatial effects were not important in all
years but there was evidence of interplot competition in some
years. For the genetic evaluation of potato yield, a simple
(homogeneous) correlation structure to model G9E effects
(allowing for heterogeneity of trial genetic variance) was suitable
for the series of early-stage MET trials tested. Simple models are
easier to fit than unstructured or factor analytic models, particu-
larly when a pedigree is included, and therefore offer advantages
for routine genetic evaluation of potato.
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