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ReseaRch

When testing selection candidates over multiple envi-
ronments, uncertainty in the estimates of genotype values 

increases with the magnitude of G E. This increases the diffi-
culty of identifying superior genotypes and compromises genetic 
progress from selection (e.g., Annicchiarico, 2002; Bos and 
Caligari, 2008; DeLacy et al., 1996a,b). A better understanding 
of GE effects within a MET testing regime allows a reevalu-
ation of resource allocation and selection strategy in a breeding 
program. The type and extent of G E is of particular inter-
est to plant breeders as the characterization of environments will 
help, in part, to define selection strategies. For example, mea-
sures of quantitative G E (heterogeneity of variance or the scale 
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ABSTRACT
Differences in trait responses of genotypes 
across environments, or genotype  environ-
ment interactions (G E), hinder the progress of 
genetic improvement. Characterization of these 
effects helps to determine breeding strategies 
and improve resource allocation in a cultivar 
development program. This study used histori-
cal multienvironment trial (MET) data (34 trials 
in five locations) for the analysis of marketable 
yield of advanced selections in a New Zealand 
potato (Solanum tuberosum L.) breeding pro-
gram. A factor analytic (FA) model was used for 
the analysis of these MET data. Contrasts based 
on the environmental loadings were observed 
between the program’s main trial locations 
in the North Island (pukekohe) and the South 
Island (Lincoln), indicating that these locations 
optimized differentiation between genotypes in 
terms of G E effects. Genetic correlation esti-
mates between trial environments were mostly 
moderately high (>0.5) to high (>0.8) and ranged 
from zero to positive with a maximum coeffi-
cient of 0.97, suggesting that quantitative (res-
caling) rather than qualitative (crossover) G E 
effects were of greater importance. A number of 
newly developed varieties were shown to have 
higher genetic yield potential than older and 
established commercial cultivars but did not 
necessarily show better yield stability over the 
locations tested.
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change of genotypes) between test locations may help to 
determine that some locations offer little extra informa-
tion in terms of differentiating genotypes, that is, a certain 
degree of environment duplication is present, demanding 
scrutiny of its opportunity cost. Consideration should 
therefore be given for such locations to be dropped from 
the testing schedule. Alternatively, the presence of quali-
tative G E (crossover interaction, or the rank change 
of genotypes) may determine that separate breeding pro-
grams for subsets of locations are necessary to select for 
specific adaptation (e.g., Atlin et al., 2000).

There are numerous statistical approaches to model 
G E effects in plant breeding, which have been exten-
sively reviewed by various authors (e.g., Crossa et al., 2010; 
DeLacy et al., 1996a; Fox et al., 1997; van Eeuwijk et al., 
2005). In general, these methods are based on univariate 
or multivariate methods that vary in their degree of com-
plexity and the information that they provide. Over recent 
years, flexible multivariate multiplicative methods have 
found favor, including the additive main effects and mul-
tiplicative interaction (AMMI) model (Crossa et al., 1991; 
Gauch and Zobel, 1988). This approach carries out singular 
value decomposition on the matrix of the two-way table 
of G E effects, whereby each is modeled as the prod-
uct of a genotypic score and an environmental loading. 
Additional multiplicative (bilinear) terms are considered if 
they improve model fit. The AMMI model is classified as 
one of several types of general linear-bilinear model. More 
recently, a multiplicative mixed-modeling approach using 
factor analysis, which is considered as another class of linear-
bilinear model and a mixed-model analogy of the AMMI 
fixed-effect model (Piepho, 1997, 1998; Smith et al., 2001, 
2005), has been used to evaluate MET data. Heavy attrition 
of breeding lines at each stage of a MET series of breeding 
trials is typical of plant breeding programs and the incom-
plete nature of such data is better dealt with by residual 
maximum likelihood (REML)-based procedures. Further, 
there has been growing trend amongst crop breeders, fol-
lowing their animal- and tree-breeding counterparts, to 
treat genotypes as random effects, at least in the early stages 
of trials. Genotype value predictions are shrunk toward 
the mean to allow for the uncertainty surrounding the dis-
tribution of random effects and there is greater flexibility 
in analyzes with, for example, inclusion of a coefficient of 
coancestry matrix to take account of relationships among 
genotypes (e.g., Crossa et al., 2006; Oakey et al., 2006; 
Piepho et al., 2008; Smith et al., 2005).

Potato crops are known to show variability in seasonal 
yields over both regional and field scales (e.g., Po et al., 
2010; Redulla et al., 2002), suggesting the need for exten-
sive MET evaluation of selection candidates in breeding 
programs. Studies into G E in potato breeding stud-
ies have generally been restricted to a limited number of 
advanced clones and cultivars, (e.g., Affleck et al., 2008; 

Cotes et al., 2002; Tai and Coleman, 1999). Typically, 
breeders require information on a larger number of geno-
types for inference of performance and stability to help 
to make more informed selections earlier in a breeding 
program, and there is a desire to distribute clones across 
multiple locations as early as possible (Haynes et al., 2012; 
McCann et al., 2012). The potato breeding program of 
the New Zealand Institute for Plant & Food Research 
Ltd. (PFR) targets the selection of genotypes that per-
form well across all major potato production regions, that 
is, those that are broadly adapted within a New Zealand 
context. The multivariate analysis of MET data provides 
an opportunity to assess the extent and type of G E 
present in historic potato yield trials, which may go some 
way to guide resource allocation for METs and the test-
ing strategy for genotype selection in future by evaluating 
environments as well as genotypes.

The study takes a mixed linear-bilinear modeling 
approach to measure G E effects and stability of genotypic 
responses across the major potato production regions of New 
Zealand for potato yield. It uses data collected from a series 
of historic yield trials, comprising advanced selections, over 
a number of year–location combinations (environments). 
A FA model is used to measure the relationships between 
genotype performance and environments and to character-
ize environments. The yield performance and the stability 
of recent advanced selections from the PFR breeding pro-
gram are also compared with those of older established cul-
tivars that are currently and, in some cases, widely grown 
in New Zealand. The study aims to evaluate test locations 
that are used for the selection of broadly adapted cultivars to 
improve selection efficiency. Potato varieties are also evalu-
ated to assess the genetic progress of tuber yield improve-
ment in the New Zealand potato breeding program.

MATERiAlS ANd METHodS
data
The data for study were collected from breeding trials of the 
PFR potato genetic improvement program. Trials were per-
formed between the years 1999 and 2005 (harvest years) at five 
sites that represent the major potato-producing regions in New 
Zealand (Fig. 1): Pukekohe, South Auckland (37° 12¢ S 174° 57¢ 
E, 141 m asl); Matamata, Waikato (37°48¢ S, 175°45¢ E, 53 m asl); 
Ohakune, Central (39°24¢ S, 175°24¢ E, 741 m asl), Palmerston 
North, Manawatu (40°21¢ S,175°37¢ E, 30 m asl), and Lincoln, 
Canterbury (43°39¢ S, 172°28¢ E, 14 m asl). For interest, a sum-
mary of basic climate data (rain, temperature, and humidity) 
for the main crop growing season (November through March) 
at each location is provided in Table 1. At the time of writing, 
New Zealand regional climate data can be accessed via http://
cliflo.niwa.co.nz, and the national soil database can be found at 
http://smap.landcareresearch.co.nz. Pukekohe and Lincoln are 
the main potato research sites and, along with Manawatu, can 
be categorized as PFR on-station trials, as trials are all managed 
on PFR research farms. Waikato and Ohakune are off-station 
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yield was converted to metric tonnes per hectare for analyzes 
of marketable tuber yield. Marketable yield, as described and 
hereon in referred to simply as tuber yield, is usually considered 
to be the total economic yield, as there is often no economic 
value attributed to undersized but otherwise sound tubers. 
Although there were a total of 1619 genotypes represented in 
the data, many were lost after only 2 yr of testing through the 
discarding of unsuitable candidates. Genotypes of particular 
interest were tested in at least four locations over 3 yr and were 
made up of both New Zealand and international cultivars as 
well as advanced clonal selections. Many of the international 
cultivars are popular commercial cultivars widely grown for 
fresh and processing production in New Zealand.

For clarification, the term variety in this paper is used 
generically and can refer to both clonal selections and cultivars. 
It is also used synonymously with genotype. The term cultivar 
is used to describe a variety that has been officially named and 
commercially released and is or has been previously protected 
under plant variety rights.

Statistical Model
For illustration, the general form of the linear mixed model for 
the jth trial (environment) was: yj = Xjmj + Z1jbj + Z2jg j + ej, 
where yj is the vector of yield observations, mj denotes the fixed 
effects of trial means, ( 2

b0,
jj b I  and ( 2

g0,
jj g I  are vec-

tors of random (nongenetic) design factors and genetic effects, 
respectively, ( 2

e0,
jj e I  is the vector of random error terms, 

and I is an identity matrix. The terms Xj, Z1j, and Z2j are known 
incidence matrices of zeros and ones that relate the phenotypic 
observations to their corresponding vectors. The nongenetic fac-
tors were trial blocking factors and included the rows and columns 
of the incomplete block designs (PK, MW, WAI, and OHA) 
and the complete blocks of the RCB designs (LIN). For MET 
analysis, the mixed-model equations (MME) were constructed 
to analyze the vector of observations for the 34 trials (y1,y2,…,y34) 
tested from 1999 to 2005. The joint distribution of the random 
terms was assumed to follow a multivariate normal distribution 
with means and covariances defined by the following:

,
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e 0 0 0 R I

  

where 0 are null matrices, B0, G0 and R are covariance matrices 
for design factors (row and column or block), genetic, and residual 

trials, as these are managed within a commercial potato crop. 
The 34 trials, synonymous with environments (year–loca-
tion combinations), were clonal stages four and five (C4 and 
C5 respectively) of main crop tuber yield trials. Target plant-
ing dates, harvest dates, and the number of genotypes entered 
into each trial are shown in Table 2. The C4 trials were only 
performed in Pukekohe (PK), Manawatu (MW), and Lincoln 
(LIN). Selected genotypes from the C4 stage were entered into 
further main crop trials at stage C5 that also included locations 
Waikato (WAI) and Ohakune (OHA) as well as PK, MW, and 
LIN. For each season in the Waikato region, there were two 
trials: an early trial and a late trial. The late trial represented the 
regional practice of the winter harvesting of potatoes with the 
crop maintained in the ground for approximately 200 d.

Trials at all North Island locations (PK, MW, WAI, and 
OHA) were based on Latinized row–column designs of vary-
ing size with 20 to 200 genotypes replicated twice (C4 trials) or 
three times (C5 trials). Each genotype occurred once, at most, 
in both rows and columns across a trial of rectangular plots. 
A typical plot was made up of 12 tubers in total, planted in a 
six by two arrangement. The South Island trials (LIN) were 
randomized complete-block (RCB) designs typically of 200 to 
300 genotypes replicated three times. Plots were made up of 12 
tubers in total, planted in a 12 by one arrangement.

Each plot was harvested, and yield was recorded as market-
able tuber yield after undersized (<80 g) and defective tubers 
had been removed. Defective tubers, for example, may have 
secondary or abnormal growths, rot, or excessive greening. Plot 

Table 1. Seasonal climate data (averages for November 
through March) from 1998 to 2005†.

Trial location Rain
Tempera-

ture
Total  

degree days
Relative 
humidity

mm °c 10°c %

Pukekohe (PK) 452 17.6 1145 85

Manawatu (MW) 393 16.4 966 78

Ohakune (OHA)‡ – – – –

Waikato (WAi) 303 16.9 1027 86

Lincoln (Lin) 286 15.3 689 77
† Data retrieved from http://cliflo.niwa.co.nz (accessed 18 Mar. 2015).
‡ Data not available.

Figure 1. Location of the new Zealand institute for Plant & Food 
Research Ltd. potato breeding trials in new Zealand. Main re-
search sites are at Pukekohe and Lincoln (solid triangles).
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effects, respectively, and Ä  is the direct (Kronecker) product. 
The matrix B0 is a diagonal matrix of (nongenetic) scaled iden-
tity matrices, the variance structure of plot error effects R are 
assumed to be block diagonal, and I are identity matrices. The 
assumption was that the variance matrix for the genotype effects 
has the separable form Gg = G0 

Ä
 I, where G0 is the matrix of 

genetic variances and covariances between environments and I 
is an identity matrix. The term I can be replaced by A with 
the coefficient of coancestry between genotypes as elements (the 
numerator relationship matrix) as shown, for example, by Oakey 
et al. (2006), Crossa et al. (2006), and Kelly et al. (2009).

The form of the genetic variance matrix, G0, fitted was 
factor analytic (FAk) (Piepho, 1998; Smith et al., 2001), allowing 
for heterogeneity of genetic variance and covariance between 
environments. The loadings (as the leading principal compo-
nents) and residuals, or specific variances, are given by: G0 = 

¢ +LL j ; where L is a ( j  k) matrix of environmental load-
ings(Fjk) and j is a ( j  j) diagonal matrix of specific variances: 
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This is considered as a (random) regression of genotype and G 
E on (k) latent covariables (the environmental loadings) with 
a separate slope for each genotype (the genotype scores) and 
separate or common intercepts, depending on whether geno-
type main effects and G E are combined or fitted separately. 
There was no distinction between genotype main effects and G 
E effects in the present analysis.

A rotation is applied to the matrices of genotypic scores and 
environmental loadings to obtain a principal component solution 
as a more useful interpretation (Smith et al., 2001). For genotypes, 
when there is no distinction between genotype main effects and 
G E effects (genotype effects nested within environments), the 
first score factor mainly represents genotype performance and 
the second score factor illustrates genotype stability (Stefanova 
and Buirchell, 2010), which is considered as a dynamic stabil-
ity if yield performance in each environment is is parallel to the 
mean response of the tested set of genotypes (Annicchiarico, 
2002). For more detailed information on the statistical method, 
Smith et al. (2001) provide a comprehensive account of the use of 
genetic variance structures in the analysis of crop trial data, while 
Cullis et al. (2010) demonstrate the application of FA models to 

MET data. The analyzes of the data were undertaken using R (R 
Development Core Team, 2012) with the mixed models fitted 
using ASReml-R (Butler et al., 2009).

The best linear unbiased estimators (BLUEs) of the fixed 
effects, m̂ , and best linear unbiased predictors (BLUPs) of the 
random effects ( b̂  and ĝ ) were obtained from the solutions to 
the MME (e.g., Lynch and Walsh, 1998; Smith et al., 2001, 
2005). Variance components are unknown and were estimated 
from the data using REML (Patterson and Thompson, 1971). 
Empirical genetic values are therefore a result of applying vari-
ance components in the MME that are estimated from the 
data in an iterative process, so providing empirical BLUEs of 
fixed effects and empirical BLUPs of random effects. The 95% 
confidence intervals of BLUPs of genotype values were cal-
culated from the prediction error variances (PEV), with the 
PEV obtained from the inverse of the coefficient matrix of the 
mixed-model equations for random genotype (variety) effects.

From the results of FA modeling, a heatmap was used to 
illustrate the genetic relationships and G E across the trials. 
First- and second-factor environmental loadings were plotted on 
the correlation scale as a uniplot to group environments accord-
ing to their genetic correlations. This is described by Cullis et 
al. (2010), offering greater clarity than biplots as genotype scores 
and environmental loadings are plotted on separate graphs, 
which is more favorable for plant breeding trials that typically 
deal with large numbers of genotypes and environments. The 
interpretation of the environmental loadings, that is, the direc-
tions and projections of the vectors, illustrated in such plots from 
a FA2 model is analogous to AMMI and other linear-bilinear 
models with two components (e.g., Fox et al., 1997; Yang et 
al., 2009). The squared length of a vector for an environment 
indicates the proportion of genetic variance modelled for that 
environment by the two factors and its particular relationships 
with another vector of an environment is the cosine of the angle 
between the two vectors, providing the genetic correlation aris-
ing from the two factors (Smith et al., 2001). Standard errors of 
the environmental loadings were obtained by jackknifing; each 
environment was deleted in turn, data reanalyzed, and standard 
errors obtained from the resampled results.

RESulTS
The mean tuber yields for plots in trials ranged from 26 
(LIN-C4-05) to 70 t ha−1 (WAI-C5-03L), with a maxi-
mum plot yield of 139 t ha−1 (LIN-C4-02) (Fig. 2). Lincoln 
trials were routinely irrigated, which probably resulted in 
a greater opportunity for genotypes to better express their 
yield potential, as their mean yields were consistently high 

Table 2. Summary of target potato planting and harvest dates (1999–2005), canopy days, days from planting to harvest, and 
number of lines tested per trial. All figures are approximate.

Trial location Planting date Canopy days† Harvest date Days to harvest Clones per trial

Pukekohe (PK) 1 november 140 20 May 200 100–200

Manawatu (MW) 25 October 140 10 April 170 40–120

Ohakune (OHA) 10 november 140 1 June 200 20–30

Waikato e-L (WAi)‡ 1 Oct., 10 nov. 120, 140 1 March, 1 June 150, 200 20–30

Lincoln (Lin) 10 October 130 10 April 180 200–300
† canopy days are the number of days from planting to canopy loss (by natural senescence, chemical desiccation, or mechanical means).
‡ e, early trial; L, late trial.
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PK-C5-02. Model fit was also compromised, albeit to a 
lesser degree, for trials PK-C4-02, MW-C5-99, MW-C5-
02, MW-C5-03, WAI-C5-99L, WAI-C5-01E, WAI-C5-
02E, WAI-C5-03E, OHA-C5-03, and LIN-C4-05, as 
indicated by the reasonably poor percentage of variance 
that was accounted for by the FA2 model.

The relationship between pairs of environments is 
represented by the cosine of the angle between two envi-
ronment vectors (Fig. 3). In general, environment vectors 
with a similar direction, as plotted from the origin approx-
imate a high and positive correlation. As dissimilarity in 
the direction of two environment vectors increases, then 
the correlation between the two environments decreases, 
and those with opposite directions approximate a high and 
negative correlation of G E effects (Fox et al., 1997). 
The span of vectors in Fig. 3, between PK-C5-01 (15) and 
OHA-C5-02 (18) and therefore encompassing all trials 
(not drawn), was subtended by an angle of approximately 
90°, therefore indicating a pairwise correlation between 
these two trials (and a minimum correlation obtained 
from all pairwise combinations) of about zero.

As a general rule, the uniplot (Fig. 3) illustrated that 
trials were more likely to be clustered by location rather 
than by year. Most trials at the two main PFR research 
sites (PK and LIN) were delineated from one another, 

(56–70 kg ha−1) for the years 2001 to 2004. Phenotypic 
standard deviations for these four LIN trials ranged from 
16 to 19 compared with a range of mostly 10 to 14 for 
other trials, with some exceptions falling outside this range 
(data not shown). The low mean yield (26 t ha−1) and high 
coefficient of variation (59) for LIN-C4-05 were probably 
due to water logging that was reported for a period of the 
growing season for this trial (plot yield range of 0–79 t 
ha−1). A larger variation in mean yield (across years) was 
observed for PK trials than LIN, ranging from 28 to 50 t 
ha−1. For each location that trialled both C4 and C5 stages 
(PK, MW, and LIN), observed mean yields (and usually 
their standard deviations) were reasonably similar within 
each location-year (but not across years within locations). 
Although similar, there was a general pattern of observed 
mean yields increasing and variation decreasing from stages 
C4 to C5 for trials grown in the same location–year com-
bination, reflecting the selection of varieties for tuber yield.

The total percentage variance accounted for by FA2 was 
a satisfactory 75%, an increase of 11% from the FA1 vari-
ance model. Starting values from the results of FA2 were 
used for the attempted fit of FA3, but convergence failed. 
The FA2 model was a reasonable fit for many of the trials 
and first latent variables were all positive (Table 3). Model 
fit, however, was particularly poor for trials PK-C4-01 and 

Figure 2. Boxplots of (marketable) potato tuber yield in tonnes per hectare from 34 trials. The prefixes WAi, MW, PK, OHA, and Lin refer 
to Waikato, Manawatu, Pukekohe, Ohakune, and Lincoln locations, respectively. Trials are grouped by island (north, South) and then by 
year and location. Mean yields are indicated by the filled circles.
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and each tended to group together. The LIN trials in par-
ticular were grouped together closely and had negative 
second latent variables. The PK trials were mostly grouped 
together (with the exception of three trials) and, in contrast 
to those of LIN trials, second latent variables were mostly 
positive. For trials PK-C5-02 and PK-C4-01, yields were 
poor, and the model accounted for only 7 and 36% of their 
total variation, respectively (Table 3). Large specific vari-
ances were also found for PK-C5-02 and (to a lesser extent) 
for PK-C4-01. These results indicated that the interpre-
tation of pairwise genetic correlations inferred from the 
uniplot involving these two trials may be unreliable (Cullis 
et al., 2010). The MW trials were not so tightly clustered 

together but fell between the two main PK and LIN clus-
ters, which reflected the geographic (latitudinal) location 
of these three on-station trials (Fig. 1). For off-station trials 
(WAI and OHA), the clustering of locations was not so 
easy to discern compared with that of on-station trials (PK. 
MW, and LIN) because of greater variability in second 
latent variables for WAI and OHA than LIN and PK. The 
three OHA trials, for instance, were widely dispersed with 

Table 3. Trial numbers and identities with estimates of rotated 
environment loadings (first and second [scaled] latent vari-
ables, l 1 and l 2, respectively) and the percentage of variance 
accounted for (%V ) by the first latent variable (l 1) and the first 
and second latent variables (l 1 + l 2).

Trial 
no.† Trial‡ l 1 l 2 %V (l 1)

%V  
(l 1 + l 2)

1 WAi-c5-99e 0.67 −0.61 44 81

2 WAi-c5-99L 0.66 −0.03 44 44

3 MW-c5-99 0.70 −0.03 49 49

4 PK-c5-99 0.82 0.31 67 76

5 WAi-c5-00e 0.96 −0.29 92 100

6 MW-c4-00 0.84 0.09 70 71

7 PK-c4-00 0.68 0.43 46 65

8 PK-c5-00 0.75 0.43 56 75

9 WAi-c5-01e 0.79 0.01 62 62

10 WAi-c5-01L 0.93 0.28 87 95

11 OHA-c5-01 0.87 −0.50 75 100

12 MW-c4-01 0.95 −0.08 90 90

13 MW-c5-01 0.86 0.10 74 74

14 PK-c4-01 0.49 0.34 24 36

15 PK-c5-01 0.72 0.50 52 77

16 WAi-c5-02e 0.59 −0.50 35 61

17 WAi-c5-02L 0.84 0.51 71 97

18 OHA-c5-02 0.57 −0.82 33 100

19 MW-c4-02 0.83 0.26 68 75

20 MW-c5-02 0.72 0.32 52 62

21 PK-c4-02 0.65 0.38 43 57

22 PK-c5-02 0.24 −0.08 6 7

23 WAi-c5-03e 0.74 0.30 55 63

24 WAi-c5-03L 0.93 0.11 86 87

25 OHA-c5-03 0.76 0.10 58 59

26 MW-c4-03 0.88 −0.25 77 84

27 MW-c5-03 0.65 −0.19 42 46

28 PK-c4-03 0.89 0.02 78 79

29 PK-c5-03 0.75 −0.29 56 65

30 Lin-c4-01 0.86 −0.31 75 84

31 Lin-c4-02 0.80 −0.34 64 75

32 Lin-c4-03 0.84 −0.25 70 76

33 Lin-c4-04 0.82 −0.29 67 76

34 Lin-c4-05 0.71 −0.20 51 55

† Trial numbers correspond to those presented in Fig. 3a.
‡ e, early trial; L, late trial.

Figure 3. environment uniplot of the genetic effect for potato tuber 
yield. Factor 1 and Factor 2 represent the rotated environment 
loadings on a correlation scale: (a) trials (given as trial numbers 
and are found with their corresponding trial identities in Table 
3) and; (b) trials with trial locations represented as symbols and 
standards errors for the environmental loadings. The prefixes WAi, 
MW, PK, OHA, and Lin refer to Waikato, Manawatu, Pukekohe, 
Ohakune, and Lincoln locations, respectively.
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a large range of positive to negative latent variables. There 
may also have been a contrast between the WAI early trial 
(positive) and WAI late trial (negative).

The genetic correlation matrix is illustrated by the 
heatmap shown in Fig. 4. Genetic correlations ranged from 
0 to 0.97, with two groups of trials displaying particularly 
strong correlations. This pattern is also reflected, to a large 
degree, by the uniplot in Fig. 3. The reduced correlations 
between PK and LIN in most years are visually represented, 
as are the low correlations between both LIN and PK and 
some OHA and WAI trials. The heatmap also illustrates 
the low correlations between PK-C5-02 (and PK-C4-01) 
and all (or most) other trials, which is a further indication 
that the uniplot may not be a reliable means to infer pair-
wise genetic correlations involving these particular trials.

The predicted genotype values and stability mea-
sures for a number of advanced clones and cultivars are 
shown in Fig. 5. High-yielding, advanced clones that 
have been developed by the PFR breeding program can 
be identified (Fig. 5, 6), for example, Moonlight, Allura, 
Summer Delight, but these selections did not necessarily 

demonstrate greater stability than recently imported cul-
tivars. There is evidence to suggest there has been genetic 
improvement for potato yield in New Zealand previous to 
1970 based on the comparison of more recently developed 
varieties with old cultivars that are still widely grown (Fig. 
6). In 2011, the cultivars included in this analysis made up 
approximately 75 to 80% of the seed tuber production area 
(with ~33 cultivars accounting for the remainder), which 
indicates their importance as commercially grown culti-
vars in New Zealand. The pre-1970 cultivars (shown in 
Fig. 6) contributed to ~20% of the total seed tuber grow-
ing area, while three cultivars, namely Agria, Nadine, 
and Moonlight, accounted for ~40%. The international 
(imported) cultivars Russet Burbank, Desiree, Draga, 
Nadine, Ranger Russet, Laura, and Agria, together, con-
tributed a large proportion of the total potato production 
area (~40%), but the predicted mean yield for most of these 
cultivars was below the observed mean commercial yield 
of 46 t ha−1 recorded from 2001 to 2010 (FAOSTAT, 2013). 
Varieties have been developed in New Zealand that are 
both high yielding and acceptable in terms of cooking and 

Figure 4. Heatmap of the genetic correlation estimates of potato tuber yield from 34 trials between 1999 and 2005. The prefixes WAi, 
MW, PK, OHA, and Lin refer to Waikato, Manawatu, Pukekohe, Ohakune, and Lincoln locations, respectively.
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Figure 6. Predicted yields with 95% confidence intervals for imported potato cultivars (blue squares), new Zealand-bred cultivars (black 
circles), and advanced clones (red triangles). Year of cultivar release is approximate (for advanced clones, this is the year presented for 
commercial tender) and the horizontal line represents the new Zealand mean seasonal production yield of 46 t ha−1 between 2001 and 
2010 (FAOSTAT, 2013).

Figure 5. Predicted yields and stability measures (t ha−1) for imported cultivars (blue), new Zealand-bred cultivars (black), and advanced 
clones (red). Standard errors of stability estimates are not shown for sake of clarity, but ranged from 0.1 to 0.5. confidence limits for 
yield are shown in Fig. 6.
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processing quality. Further, many of the advanced clones 
developed by PFR since 2000 are above this yield thresh-
old, suggesting that, in relation to the production cultivars 
presented here, the genetic selection for increased tuber 
yield in a multitrait selection program in New Zealand has 
been largely successful. However, the genetic improve-
ment of yield of some of the advanced clones tendered 
for commercial release between 2000 and 2010 has been 
generally modest and often at or just above the observed 
mean yield reported over this period. The locally bred cul-
tivars Summer Delight and Allura and the imported culti-
var Markies are not widely grown commercially but have 
been shown to be particularly high yielding under New 
Zealand test conditions. These results are based on New 
Zealand test conditions managed for selection purposes 
and assume that there is no important G M (genotype  
management) interaction.

diSCuSSioN
Multilocation Testing in Potato  
Evaluation Trials
Yield testing in breeding programs is highly resource 
demanding in terms of land and labor requirements. The 
retrospective analysis of historical MET data is of interest 
to plant breeders, as it determines the magnitude and type 
of G E effects for traits, which helps to reevaluate breed-
ing strategies. The discrimination of trials, in terms of G 
E effects, is also useful, as it can provide plant breeders with 
information on locations with regard to differentiating 
genotype performance: “Efficiency in selection necessitates 
rationalisation of selection locations according to similarity 
of selection locations in discriminating among the geno-
types.” (DeLacy et al., 1996b, p. 244). Potato selection in 
the New Zealand potato breeding program is based on 
genotypes that are broadly adapted to perform well over 
all major growing regions in New Zealand. In the present 
study, the main PFR trial sites, PK and LIN, were iden-
tified as two contrasting test locations for the evaluation 
of tuber yield, and that testing at these two sites (and as 
early as possible in the selection cycle) is likely to provide 
the best opportunity to identify broadly adapted clones. 
Considering the three PFR research farm locations (PK, 
MW, and LIN), there was a pattern of stratification, in 
general, across these on-station trials (Fig. 3) perhaps based 
on latitude (Fig. 1). The MW second-factor environment 
loadings were more variable than those of LIN, effectively 
distributed around zero and clustered between PK and LIN 
(Fig. 3). Genetic correlations between MW trials and other 
trials were positive and generally moderately high to high 
(Fig. 4). This may suggest that MW field trials are contrib-
uting little extra in terms of discriminating genotypes for 
tuber yield performance and broad adaptation above and 
beyond that which is being achieved from comprehensive 
testing in PK and LIN; resources may be better diverted 

elsewhere, for example, by improving selection precision 
from further replication or by increasing selection intensity 
by evaluating more clones at existing sites. Increasing test 
locations implies an increased cost of running a breeding 
program if there is no net benefit in terms of genetic gain 
or the probability of identifying the best clones.

Commercial potato production in New Zealand is in 
a temperate maritime climate with some (but not extreme) 
differences in rainfall, temperature, and humidity. Grow-
ing regions such as LIN in the Canterbury region of the 
South Island, which are prone to long periods of water 
deficit in the summer months, are routinely irrigated. Pro-
duction at PK and WAI, on the other hand, has tradition-
ally relied on rainfed production, but in recent years irriga-
tion has been available during extended dry periods. Yields 
from the regional trials (1999–2005), however, may have 
been more erratic because of the greater season-to-season 
variations in precipitation and exposure to cycles of supply 
and deficit. The potato crop is reported to be very sensitive 
to soil water condition compared with many other crops, 
and fluctuating water availability and the timing of avail-
ability over the growing season can severely affect total and 
marketable yield (e.g., Vayda, 1994 and references therein; 
Walworth and Carling, 2002). Off-station trials (WAI and 
OHA) behaved more erratically, in general, did not appear 
to group together in any predictable pattern, and genetic 
correlations between these trials and others were some-
times low and effectively zero (Fig. 3). To some extent, this 
may have been a reflection of on-station trials (PUK, MW, 
and LIN) being more similarly managed within location 
than the off-station trials of OHA and WAI and, there-
fore, less affected by management factors that were outside 
of the breeders’ control, for example, planting densities 
and nutrient management. Interestingly, the mean ratio of 
genetic to environmental variance was highest for the off-
station location of OHA (3.8), with WAI at 1.8 and PUK, 
MW, and LIN at 2.0, 1.5, and 2.7, respectively.

It would be informative to the breeder if there were 
a better understanding of the reasons for the poor genetic 
correlations between environments. Although the models 
tested were suitable for the aims of the current study, a 
disadvantage of the methods presented is that they are sta-
tistical rather than descriptive. Descriptive or analytical 
approaches aim to characterize the response of genotypes 
and environments in terms of abiotic and biotic factors 
(Fox et al., 1997), and they may also include physiologi-
cal or genetical (e.g., quantitative trait loci) information. 
Descriptive statistical models to analyze G E data have 
been reviewed by van Eeuwijk et al. (2005) and Crossa et 
al. (2010). Such an approach was used in an empirical study 
by Zhang et al. (2013) to characterize various environ-
ments in Australia and the response of seed yield and oil 
content in canola genotypes. Based on their results, phe-
nology was found to have an influence on the performance 
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of genotypes in contrasting climates and this information 
was used to develop a breeding strategy targeted at specific 
adaptation. Similar approaches could be followed for the 
evaluation of potato MET data in programs that target 
specific adaptation in cultivars for a diverse range of cli-
mates (e.g., the CIP breeding programs based in Peru).

A recent genomic prediction study in barley by Heslot 
et al. (2013) used the prediction accuracy, rather than the 
genetic correlation, between environments to characterize 
test environments and to improve prediction of genomic 
breeding values in variety evaluation for the target popula-
tion of environments. Studies to determine the extent and 
type of G E effects found in historic tuber yield trials will 
help to determine the testing strategy for genomic studies 
and variety selection for potato breeding programs in future.

Genetic improvement of Potato Yield  
and Stability
Douches et al. (1996) found that the genetic yield poten-
tial of modern cultivars in the USA had not improved over 
those of vintage cultivars, which was attributed to a greater 
focus on tuber (processing) qualities and selection for earlier 
maturity. Other studies have indicated that the contribu-
tion of genetics to improve yields has been small relative 
to those obtained from developments in agronomic practice 
(Sneep and Hendriksen, 1979; Walker et al., 2003), which 
seems to be contrary to reports for other staple crops (e.g., 
Duvick, 2005; Mackay et al., 2011). The present study has 
shown that the PFR potato improvement program has 
made some progress in developing advanced clones (those 
tendered for commercial release) and commercially released 
cultivars with marketable tuber yields above those found for 
established cultivars (Fig. 6) that together make up a large 
proportion of the current commercial crop in New Zea-
land (including cultivars Desiree, Nadine, Agria, Russet 
Burbank, and Ranger Russet). In plant variety terms, some 
of these cultivars are old. For example, Russet Burbank, a 
popular french-fry cultivar, dates back to 1908 and Desiree, 
a popular table cultivar, dates back to 1961 (van Berloo et al., 
2007). This, to some degree, illustrates the slow adoption of 
newer and more productive cultivars, which is a conserva-
tism that is reported to be characteristic of potato production 
systems, in general, (Tarn et al., 1992; Veilleux and De Jong, 
2007; Walker et al., 2003) and is not conducive to advancing 
genetic progress for tuber yield in potato production.

Point estimates for stability of a number of varieties 
(cultivars and advanced clones) are given in the present 
study (Fig. 5) and show that all varieties were relatively 
stable over the locations tested. Although estimates are 
likely to be often associated with large standard errors 
(up to ±0.5 in the present study), particularly for geno-
types tested over limited environments, such information 
is useful for breeders to characterize genotypes. There is 
no evidence to suggest that New Zealand-bred cultivars 

or advanced lines are any more or less stable than inter-
national cultivars bred offshore. Breeders are more likely 
to select promising candidates that are more consistent in 
performance over trials, but this is not explicitly measured 
in the PFR program and stability is gauged by a genotype’s 
variability in mean performance (relative to common 
standards) over many trials. From these data, it may be 
interesting to note that Russet Burbank, which is widely 
acknowledged to be sensitive to water stress (conditions 
that rapidly decrease its marketable yield because of the 
development of deformed tubers), was shown to be more 
unstable than Desiree (Fig. 5), a cultivar that is reported 
to be more tolerant of water stress (Vayda, 1994). Desiree 
showed near-average predicted yields and its stability pos-
sibly supports anecdotal reports that yield reliability may 
have, in part, contributed to its popularity.

With limited resources for testing genotypes, breed-
ers largely have to ignore genotype  management inter-
action (G  M) effects. Elite potato lines are regularly 
developed that meet the high expectations that breed-
ers demand but fail to make an impact in a commercial 
setting. This could, of course, be the result of numerous 
agronomic, economic, marketing, political, and social 
factors. However, as Messina et al. (2009) point out, the 
limitation with field trials is that breeders are searching a 
restricted set of the large space defined by all combinations 
of genotypes and target environments. When added to 
the complication of variable management practices, this 
expands G  E to an even more complex G  E  M 
space. Breeders have to contend with G  E and largely 
ignore the G  M, which is left to agronomists to deal 
with by identifying best management practices for a small 
selection of elite cultivars such as planting densities, water 
management, and nutrient requirements. If this step is 
neglected, then the potential of new cultivars are often 
not realized if traditional management practices that apply 
to older established cultivars are assumed to apply also to 
new cultivars. Crop yield is a complex trait; to enhance 
rates of yield improvement and to explore the G  E  M 
space more effectively, a step change in the understanding 
of physiological systems and processes and the develop-
ment of plant simulation models has been proposed as a 
means to better link the genetic variation of physiologi-
cal yield determinants with their underpinning genetic 
systems (e.g., Hammer et al., 2006; Messina et al., 2009).

CoNCluSioNS
The evaluation of MET data from a national potato 
breeding program identified trial locations that were most 
suitable for distinguishing the performance of variet-
ies and to select those that were broadly adapted across 
target production sites. This study also allowed a direct 
comparison of the yield performance of newly developed 
varieties with established cultivars that are widely grown 
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in New Zealand to gauge genetic progress for tuber yield 
in the breeding program. Selection to improve the genetic 
potential of tuber yield has resulted in the development 
and release of new cultivars that are superior to estab-
lished cultivars, some of which were developed before 
1970. Estimates of performance stability enable breeders 
to further characterize the performance of new varieties 
over multiple environments using MET data. Analysis of 
historic potato breeding data using multivariate mixed 
models can therefore help to guide breeding strategies, 
monitor genetic progress, and improve resource allocation 
in cultivar development programs. Further research to 
relate climatic variables to genotype performance to help 
to interpret GE interaction effects should go some way 
to improving genetic gain and targeting better deploy-
ment of specifically adapted potato cultivars. A better 
understanding of GE effects will also contribute to the 
study and application of molecular selection methods for 
the genetic improvement of this important food staple.
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