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A B S T R A C T   

Selection in the New Zealand radiata pine (Pinus radiata D. Don) breeding program relies on wide-scale testing to 
adequately sample environmental variation. The program uses genomic selection for the early selection of 
parents for the next breeding cycle, but genomic selection may not perform as expected in the presence of 
crossover-type genotype-by-environment interaction (GxE) if such environments are poorly represented in the 
training population. This study uses empirical data to assess the magnitude of GxE to guide the selection and 
deployment strategy for radiata pine in New Zealand. Data was collected from eight well-connected and repli-
cated cloned full-sib progeny trials across major radiata pine growing regions in New Zealand. We applied a 
second-order factor analytic model (FA2) with additive and non-additive variance components to characterise 
GxE. Three model types were used: uncorrected pedigree, marker-corrected pedigree and marker-based relat-
edness. This study found that the average additive genetic correlations among sites were 0.76 for DBH and 0.94 
for DEN when estimated with marker-based relatedness. Models that use marker-based relatedness, without 
considering non-additive effects, provide a marginally superior fit compared to models that use pedigree or 
incorporate non-additive effects. Our study suggests that while GxE is present, its magnitude does not warrant 
regionalising (subdividing) radiata pine breeding zones for the North Island of New Zealand.   

1. Introduction 

Radiata pine (Pinus radiata D. Don) is economically the most 
important forest plantation species in New Zealand, Chile and Australia, 
exceeding 1.58 million ha, 1.27 million ha and 0.7 million ha respec-
tively (Ministry for Primary Industries, 2023). Radiata pine breeding in 
New Zealand began in 1953 through the New Zealand Forest Service 
(NZFS) using plus-tree material from local landraces, selected primarily 
for growth and form traits (Shelbourne and Carson, 2019). The New 
Zealand breeding objective considers four harvest-age traits (Paget, 
2022): stem volume, wood density, wood stiffness and branching at 
rotation age (~28 years). These traits are targeted by five selection 
criteria: diameter-at-breast height, corewood density, branching score, 
predicted modulus of elasticity and stem straightness measured at age of 
8–10 years after trial establishment. Radiata pine has a narrow native 
range in five different provenances (locations): Cambria (CA, USA), 
Guadalupe Island (Mexico), Cedros Island (Mexico), Año Nuevo (CA, 

USA) and Monterey (CA, USA). Provenance testing involves planting 
distinct landraces from each provenance across different target envi-
ronments assess their adaptability, thus informing early selection de-
cisions (White et al., 2007). In the 1950s, approximately 1000 
genotypes, identified as plus-trees, were collected from a blend of all five 
provenances across New Zealand (Shelbourne and Carson, 2019). This 
avoided the need for provenance selection, given radiata pine’s limited 
natural range. 

In New Zealand, radiata pine is grown in a wide variety of envi-
ronments which are subject to various changes in rainfall, temperature, 
soil types and silvicultural practices. Over the years, the Radiata Pine 
Breeding Company (RPBC) has established and measured more than 100 
trial sites to evaluate the performance of genotypes across the target 
population of environments for the prediction of breeding values. The 
current breeding strategy assumes that genotype-by-environment 
interaction (GxE) is not a concern in terms of changes in genotype 
ranking across environments and remains unexplained; however, the 
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interaction is managed by wide-scale testing to sample the environ-
mental variation (Paget, 2022). 

Regionalised breeding is an alternative to the current breeding 
strategy. Regionalised breeding involves stratifying a population into 
multiple sub-populations associated with regions or breeding zones 
based on high GxE between regions or environmental gradients. 
Regionalised deployment has been deemed more feasible compared to 
regionalised breeding because it can use existing regional breeding 
values to select seed orchard parents for production of control- 
pollinated seed crop (Johnson and Burdon, 1990) if data is available. 
In tree breeding, GxE is often deemed significant if genetic correlations 
between trials planted at different environments are below 0.7, as the 
reduction in selection intensity would be compensated by better 
genotype-site matching (Shelbourne, 1972). GxE has been estimated to 
be high for growth selection criteria (McDonald and Apiolaza, 2009; 
Shelbourne, 1972; Wu et al., 2008) compared to wood quality selection 
criteria (Apiolaza, 2012). Despite the presence of significant family x site 
interactions for growth traits, earlier research found that there would be 
limited benefit to regionalise the breeding program (Carson, 1991; 
Johnson and Burdon, 1990). A larger and more recent 
multi-environment study of 77 undescribed trial sites across south-
eastern Australia and New Zealand found high GxE for growth traits 
(Cullis et al., 2014) which led to the recommendation of regionalised 
breeding. However, this study had poorly connected trials which could 
overestimate GxE (Apiolaza, 2012; Li et al., 2018). There has also been 
no obvious delineation of GxE into specific environmental or 
geographical zones, so the definition of ‘region’ in this context has been 
vague. 

Breeding programs rely on the accurate estimates of genetic infor-
mation for predicting breeding values. The New Zealand radiata pine 
breeding program has conventionally used pedigree information to es-
timate breeding values (Henderson, 1975). Pedigree-based additive 
relationship matrices are prone to mistakes and error rates can often be 
considerable (Klápště et al., 2022). This can reduce the reliability of GxE 
estimates (Beaulieu et al., 2022), the accuracy of breeding values 
(Klápště et al., 2022) and genetic gain (Visscher et al., 2002). 
Marker-based methods present an alternative to pedigree-based 
methods and rely on dense Single Nucleotide Polymorphism (SNPs) 
marker arrays to capture the realised additive genetic relationship be-
tween individuals (Meuwissen et al., 2001). Marker-based relationship 
matrices can also capture historic relatedness that is not recorded in the 
pedigree (Hayes and Goddard, 2008), capture the Mendelian segrega-
tion term (Keller et al., 2011) and with sufficient density improve the 
reliability of genetic parameter estimates and breeding value accuracy 
(Beaulieu et al., 2022; Mulder, 2017; Walker et al., 2022). These 
marker-based relationship matrices are used with phenotypic informa-
tion in a training population to predict breeding values in the wider 
breeding population at an early age using genomic information alone, 
allowing selection at the seedling stage. Understanding GxE is important 
in this context because the magnitude of GxE will influence the testing 
strategy. If target environments are not adequately represented in the 
training population, the presence of GxE suggests that genomic breeding 
values may be poorly predicted. 

The primary focus of this research is to evaluate GxE interaction in 
the radiata pine breeding program across New Zealand. This study uses a 
set of eight well-connected and clonally replicated progeny test trials 
across important radiata pine deployment areas in New Zealand. We 
compare the use of uncorrected pedigree-based best linear unbiased 
prediction models (PBLUP) with marker-corrected PBLUP (Klápště et al., 
2022) and genomic best linear unbiased prediction (GBLUP) models. 
The impact of incorporating non-additive genetic variance on GxE is also 
assessed. 

2. Material and methods 

2.1. Plant material 

Eight clonally replicated full-sib experimental progeny trials were 
used in the prediction models. Seven sites were in the North Island of 
New Zealand, and one was in the South Island (Fig. 1) and represented 
major forestry plantation regions in NZ. There were approximately 15 
genotypes (ortets) per full-sib family that were raised to establish hedges 
for vegetative propagation. Clones were propagated as fascicle cuttings 
taken from the two- or three-year-old hedge plants and raised as con-
tainerised plants (ramets). Overall, there were 1440 genotypes from 49 
full-sib families (61 parents) with a single-paired mating design and 
these genotypes were replicated with 24,546 ramets across and within 
trial sites (Table 1). Ramets were planted in a 3.1 m x 3.1 m spacing 
(approximately 1040 stems per hectare). A resolvable incomplete block 
design (Fisher, 1992) was used in five trials and an ‘optimal’ design 
(Butler, 2013) was used in three trials. Incomplete block designs had 
approximately 15–20 blocks nested within five replicates. Each optimal 
design trial had 6 ×6 row-column (Prows and Pcols) planting blocks 
(Psets). There were 6–10 Psets in a trial which were nested in approxi-
mately 8–12 larger blocks (‘Esets’) per trial. Optimal designs were 
created with the view of using spatially correlated rows (Prow) and 
columns (Pcol). Prows and Pcols were treated as design features nested 
within Psets. The mean number of ramets per genotype in each trial site 
ranged from 2.0 to 4.5. Trials were highly connected with shared parents 
between trials ranging between 57 and 61 parents, with a total of 61 
parents used to form the entire population (Fig. 2). The number of ge-
notypes in common between trial sites ranged between 456 and 1324 
genotypes. Some trials had more genotypes and fewer ramets, particu-
larly BC55_2, BC55_3 and BC59_1 which were established one to two 
years later than the other trials. 

This study focused on two key selection criteria for the RPBC’s 
breeding program: 1) diameter-at-breast height (DBH) was measured 
using diameter tape at a tree height of 1.4 m from the ground, 2) wood 
density (DEN) was estimated with the maximum moisture content 
method (Smith, 1954) or the IML-RESI PowerDrill ®. 

These selection criteria were chosen to represent traits with low 
(h2<0.2) (DBH) (Jayawickrama, 2001) and higher (h2<0.6) (DEN) 
(Apiolaza, 2012) narrow-sense heritabilities (h2). Large phenotypic 
variances were found in both selection criteria within each trial site 
(Fig. 3). 

Genomic data were generated using two methods on different ge-
notypes 1) using the Axiom NZPRAD02 genotyping array (36,285 SNPs) 
(Graham et al., 2022) and 2) using a exome-capture genotype-by-se-
quencing approach where a large number of SNPs were genotyped with 
a lower quality (Telfer et al., 2019; Telfer et al., 2018). Genomic datasets 
from the two methods were merged using the PLINK 1.9 software 
(Chang et al., 2015). SNPs were selected based on the correlation of SNP 
genotype calls on 295 individuals genotyped on both platforms (>0.90). 
SNPs with missing data with call rates <95% were also excluded from 
the analysis. The marker data was further reduced by removing SNPs 
that had more that 60% of missing data and a minor allele frequency 
(MAF) of <0.05. Missing data was imputed by the mean genotype 
method. The remaining marker dataset included 6028 SNPs. 

2.2. Statistical analysis 

This study used a multivariate model based on pedigree corrected by 
markers (PBLUP), an uncorrected pedigree (PBLUP-U), and marker- 
based relationship matrix (GBLUP). Historically, field-recorded pedi-
grees used by the RPBC are highly likely to have contained errors for 
various reasons such as misidentified trees, pollen mix up or contami-
nation, recording and handling errors. Therefore, two forms of PBLUP 
were considered: PBLUP with marker-assisted correction of pedigree 
errors (denoted as ‘PBLUP’) and pedigree using parentage as originally 

D. McLean et al.                                                                                                                                                                                                                                



Forest Ecology and Management 561 (2024) 121887

3

recorded (denoted as ‘PBLUP-U’). Note, PBLUP(U) will be used hereafter 
to refer to corrected and uncorrected models collectively. See Klápště 
et al. (2022) for a full description on methodology for the 
marker-assisted correction of pedigree errors. Approximately 22% of 
genotypes had discrepancies in parentage when comparing the original 
pedigree with marker-assisted corrected pedigree. Among these in-
dividuals, ~7% of individuals had inconsistencies in the maternal data, 
~80% had inconsistencies in the paternal data and ~13% had in-
consistencies in both parental data. Breeding values were estimated in a 
single model, incorporating site and trial design effects using the 
ASReml-R package Version 4.2 (Butler et al., 2017). To model 
genotype-by-environment interaction (GxE) different models with 
varying complexities were tested including unstructured variance, 
one-factor, and two-factor analytic components (FA1 and FA2). Un-
structured variance models failed to converge and were excluded from 
the analysis. Models were selected based on the Akaike Information 
Criterion (AIC) (Akaike, 1974) estimated from ASReml-R which was 
appropriate because all models had equal fixed effects. 

2.2.1. Multiple site model 
The factor analytic (FA) model was used to estimate genetic corre-

lations and variance components across all trials following Cullis et al. 
(2014) and Li et al. (2018): 

Equation 1 

y = Xβ+Zaa+Zdd +Zbb+ e  

Where y is a vector for a phenotypic observation for each selection 
criteria, β is a vector of fixed effects containing the overall mean and the 
mean for each trial site, a is a vector of random additive genetic effects, 
d is a vector of non-additive genetic effects, b is a vector of experimental 
design effects and e is a vector of random residual effects. Experimental 
design effects were fitted as random effects. X, Za, Zd and Zb are known 
incidence matrices relating to the observations of effects for β, a, d and b 
respectively. 

2.2.2. Additive genetic effects 
In the linear mixed model, the random additive genetic effects (a) 

were calculated as var(a) = GA = ΓΓ’+ Ψ⊗A where Γ is a t x k (t =
number of trials, k = number of factors) matrix of loadings on the 
covariance scale, Ψ = diag [ψi] is a diagonal vector of specific variances, 
⊗ is the Kronecker product, and A is the average numerator relationship 
estimated from a pedigree and calculated in the ASReml-R package 
(Cullis et al., 2014; Zapata-Valenzuela, 2012). In the context of GBLUP, 
A is substituted for additive marker-based relationship matrix (G) which 
was calculated in the ASRgenomics (Gezan et al., 2022) R package using 
the VanRaden method (VanRaden, 2008). 

As an example, the representation of the matrices for a factor ana-
lytic variance-covariance structure with one factor (k = 1) is (Zapata--
Valenzuela, 2012): 

Equation 2 

Fig. 1. Geographical location of trials within New Zealand.  

Table 1 
Summary of trials, locations, designs, and composition.   

BC52_1 BC52_3 BC52_4 BC52_5 BC52_6 BC55_2 BC55_3 BC59_1 

Year Planted 2013 2013 2013 2013 2013 2014 2014 2015 
Forest Kinleith Rotu Mohaka Ngaruru Tairua Kaingaroa Kinleith Kaingaroa 
Region Waikato Northland Hawke’s Bay Marlborough Waikato Bay of Plenty Waikato Bay of Plenty 
*Trial Design IB IB IB IB IB OD OD OD 
No. Genotypes 635 629 526 634 635 1354 1244 1406 
No. Ramets 2130 2804 1751 1705 1567 2538 2610 2884 
Ramet/Genotype Ratio 3.36 4.46 3.34 2.72 2.51 2.01 2.22 2.13 
Annual Rainfall (mm)1 1355 1011 1181 991 1060 729 1063 729 
Annual Temperature (◦C)1 13.4 15.9 13.7 12.9 14.7 13.4 13.3 13.5 
NZ Soil Classification2 Pumice Ultic (Clay) Brown Brown Allophanic Pumice Pumice Pumice 

*IB – Incomplete block design; OD – Optimal design. 1Climate data was sourced from NIWA (2023). 2 Soil type data was sourced from Manaaki Whenua - Landcare 
Research (2023). Ramet/Genotype Ratio is the mean number of ramets per genotype in each trial site. 
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Fig. 2. Summary of concurrence of genotypes and their parents between trial sites.  

Fig. 3. Distribution of phenotypes for wood density (DEN) and DBH across each trial site. The horizontal box line and red asterisk represent the median and mean, 
respectively. The boxes represent the interquartile range which contains 50% of the data across each trial site. 
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Where λi is the loading of factor 1 on a covariance scale for the ith site. σ2
ci 

is the amount of variance explained by a clone at the ith site loading of 
factor 1. 

2.2.3. Non-additive genetic effects 
In all alternative pedigree models, non-additive effects were assumed 

to be normally distributed with var(d)~N(0,Gd ⊗I), estimated with a 

diagonal matrix of the form Gd =
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σ2
d1

• 0
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0 • σ2
d8

⎤

⎥
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⎦ where σ2

di 
is the non- 

additive genetic variance for the ith trial and I is the identity matrix. 
The diagonal structure assumes that each site has a unique non-additive 
variance and the non-additive effect of the same clone on different sites 
is independent with no correlation between the non-additive effects 
between sites. Although the diagonal model is simpler and more strict 
compared to a model using a compound symmetry structure, it consis-
tently produced lower AIC scores (results not shown) and has been 
successfully employed in a similar study (Li et al., 2018). 

2.2.4. Experimental design and residual effects 
Experimental design effects were fitted as random terms in the 

model. For incomplete block designs replicates and blocks within rep-
licates were included. In ‘optimal’ design trials, Prows and Pcols were 
nested within Psets and each Pset was nested within an Eset. Experi-
mental design effects (b) were modelled with a multivariate normal 
distribution of var(b)~N(0,Iσ2

b), where σ2
b is the variance component for 

each experimental design term. Residual effects (e) were modelled with 

a normal distribution of var(e)~N(0,R⊗I) where R =

⎡

⎢
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σ2
e1
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• • •
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e8

⎤

⎥
⎥
⎦, 

where σ2
ei 

is the residual variance for the ith trial. 

2.2.5. Additive genetic correlations 
Additive genetic correlations were estimated directly from the 

factor-analytic outputs produced by ASReml-R package which can be 
expressed as: 

Equation 3. 

rA =
σaiaj
̅̅̅̅̅̅̅̅̅̅̅
σ2

ai
σ2

aj

√

Where σaiaj is the additive genetic covariance between ith and jth envi-
ronments, and σ2

ai 
σ2

aj 
is the additive genetic variance in the ith and jth 

environments. 

2.2.6. Comparison of models’ breeding value predictions 
Spearman’s rank correlation coefficient was used to analyse rank 

changes of genotypes’ breeding values between GBLUP and PBLUP(U) 
models. Spearman’s rank correlation (Pagano et al., 2022) is suitable for 
testing the changes in rank for discrete ordinal variables (genotypes) 

between groups (models), it is less sensitive to outlying data than 
Pearson’s correlation coefficient (Pagano et al., 2022) because it limits 
outliers to the value of their rank. 

2.2.7. Heritability and factor analytic variance percentage 
Narrow-sense heritability (h2

i ) for trial site i was calculated as (Li 
et al., 2018): 

Equation 4 

h2
i =

σ2
ai

σ2
ai
+ σ2

nai
+ σ2

bi
+ σ2

ei 

Broad-sense heritability (H2
i ) for trial site i was calculated as (Li et al., 

2018): 
Equation 5 

H2
i =

σ2
ai
+ σ2

nai

σ2
ai
+ σ2

nai
+ σ2

bi
+ σ2

ei  

Where σ2
ai

is the diagonal element of GA for the ith trial, σ2
nai 

is the di-
agonal element of Gd for the ith trial, σ2

bi 
is the design effects for the ith 

trial and σ2
ei 

includes the diagonal element of R. The means of each of 
trial was used to calculate heritabilities for multiple environments. 

The percentage variance explained by k factors at each site (vai ) was 
calculated from equations given by (Smith et al., 2015): 

Equation 6 

vai = 100

∑k

r=1
λ2

ri

∑k

r=1
λ2

ri
+ σ2

ci 

λri is the loading for ith site and rth factor σ2
ci 

is the amount of variance 
explained by a clone at the ith site loading of factor 1. 

2.2.8. Breeding value accuracy 
The accuracy of estimated breeding values was estimated using 

prediction error variance (PEV) and additive genetic variance by trait 
obtained from the standard output of the ASReml-R analysis as follows: 

Equation 7 

r =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
PEV
σ2

a

√

3. Results 

3.1. Model statistics 

Overall, FA2 models provided a better fit for DBH compared with 
FA1 models based on AIC scores and this was used for the rest of the 
analysis for both selection criteria (Fig. 4) (see Appendix 1 for a full 
summary). There was no difference between FA1 and FA2 models for 
DEN. 

Marker-based models (GBLUP) had a better fit compared with 
marker-corrected (PBLUP) and uncorrected pedigree-based models 
(PBLUP-U) indicating that they are more likely to accurately capture 
GxE interaction. As expected, the marker-corrected pedigree improved 
the model fit over uncorrected pedigree-based models. The difference in 
AIC between additive-only and additive + non-additive models was 
marginal and varied between model/selection criteria combinations. In 
DBH GBLUP, the inclusion of non-additive components slightly 
improved the model fit, whereas in DEN GBLUP the difference model fit 
between additive-only and additive + non-additive models was negli-
gible. However, when including the pedigree, additive-only models had 
a better fit compared to additive + non-additive models for both selec-
tion criteria. In this study, the benefit of including non-additive effects in 
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the model did not make a significant difference to improve the charac-
terisation of GxE. 

3.2. Variance components and GxE summary 

BC52_3 was the only site that had more variance explained by FA2 
for DBH in both models compared to DEN (Fig. 4). Increasing the 
number of k factors from 1 to 2 (FA1 to FA2) did not explain much extra 
additive genetic variance for DEN (range ~ 0.4–6%) in both marker- 
based and pedigree-based models. In contrast, increasing the k factors 
from 1 to 2 explained a greater proportion of additive genetic variance 
for DBH (range ~ 0.5–30.3%) in both model types. It is evident in trials 
BC52_3, BC52_4 and BC52_5 (non-pumice soil sites) that the second 
factor captured an unknown latent variable which explained a signifi-
cantly greater proportion of additive genetic variance for DBH compared 

to the other five sites. Increasing the number of k factors also slightly 
increased the range of additive genetic correlation estimates for DBH 
(results not shown). 

The estimates of additive genetic variance (σ2
a), narrow-sense heri-

tability (h2) and broad-sense heritability (H2), and breeding value ac-
curacy (r) decreased in the following order: uncorrected pedigree-based 
model, marker-corrected pedigree-based model and marker-based 
model (Table 2). Breeding value accuracy was lower when using addi-
tive + non-additive models compared to additive models. Marker-based 
models for DBH had a slightly higher range of correlation (rA) between 
sites compared to uncorrected pedigree-based models. This was more 
pronounced when using both additive and non-additive variance com-
ponents in the model. Estimates of non-additive genetic variance (σ2

na) 
were higher in DBH compared to DEN, however, in comparison to ad-
ditive variance (σ2

a) it was small. Additive-only models had a slightly 

Fig. 4. Percentage of additive variance explained in each site by factor analytic models.  

Table 2 
Summary of variance components for FA2 multi-environment analysis.  

Model 1SC h2 (SE) H2 (SE) σ2
a σ2

na σ2
e rA (A) rA (ANA) r (A) r (ANA) 

GBLUP DBH  0.20 
(0.003)  

0.22 
(0.003)  

184.92  17.65  709.24 0.76 (0.56–0.95) 0.74 (0.53–0.94)  0.81  0.77 

PBLUP DBH  0.23 
(0.003)  

0.25 
(0.004)  

222.16  14.35  709.00 0.76 (0.53–0.95) 0.73 (0.47–0.94)  0.84  0.80 

PBLUP-U DBH  0.25 
(0.004)  

0.27 
(0.004)  

247.92  16.83  708.62 0.78 (0.55–0.96) 0.75 (0.48–0.95)  0.86  0.83 

GBLUP DEN  0.48 
(0.005)  

0.50 
(0.005)  

201.45  7.64  212.64 0.94 (0.86–0.99) 0.93 (0.84–0.99)  0.92  0.91 

PBLUP DEN  0.50 
(0.005)  

0.52 
(0.005)  

221.59  5.25  212.71 0.92 (0.82–0.99) 0.91 (0.81–0.99)  0.92  0.91 

PBLUP-U DEN  0.53 
(0.005)  

0.55 
(0.005)  

252.32  9.57  212.85 0.95 (0.88–0.99) 0.92 (0.84–0.99)  0.93  0.92 

Note: 1SC = selection criteria, σ2
a = additive variance, σ2

na = non-additive variance, σ2
e = residual variance, SE= standard error, rA = mean additive genetic correlation 

between sites and r = breeding value accuracy where (A) = additive component only model and (ANA) = additive + non-additive variance component model. Standard 
errors for heritabilities are given in parentheses. 
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higher range of genetic correlation between sites compared to models 
that included non-additive components. Narrow-sense and broad-sense 
heritability estimates varied considerably from trial to trial (Fig. 5). 
Marker-based models produced lower narrow-sense and broad-sense 
estimates of heritability in every trial site for both selection criteria 
compared to pedigree-based models. A full table of variance components 
for individual trial sites is provided in Appendix 2. 

3.3. Genetic correlations among sites 

Shelbourne (1972) proposed a threshold of 0.7 when evaluating 
whether a genetic correlation is practically significant. When examining 
the marker-based models only two of the eight trials for DBH fell below 
the threshold (Fig. 6). With DBH, sites can be split into two groupings 
those that benefited from the second factor (BC52_3, BC52_4 & BC52_5) 
and the remainder that did not. The GxE between these two clusters 
could indicate that the second factor explains an unknown latent envi-
ronmental variable that is correlated with DBH. The only trial in the 
South Island of New Zealand (BC52_5, Marlborough Region) had the 
lowest genetic correlations for both DBH and DEN compared to the 7 
other trials that were in the North Island (Fig. 6). There was a pattern of 
correlation between the sites planted in later years with optimal design 
layouts (BC55_2, BC55_3 and BC59_1). These sites had the highest ad-
ditive genetic correlations between each other and were geographically 
proximate. 

Spearman’s rank correlation (rs) was used to test the ranking dif-
ferences between each model within each selection criteria (Table 3). 
Both selection criteria had a very high and significant (p<0.05) rs value 
between all models. DEN had a range of 0.98–1 rs and DBH had a range 
of 0.96–0.99 rs when comparing genomic and pedigree-based models. 
There were no rank changes between marker-corrected pedigree and 
uncorrected pedigree models or between additive-only and additive +
non-additive models (rs ~ 1). This finding suggests that the same 

individuals would be selected regardless of whether the pedigree is 
corrected, or non-additive variance components are included or not. 

4. Discussion 

4.1. GxE in New Zealand radiata pine 

Investigating the extent of GxE interaction for radiata pine in New 
Zealand is required to guide selection and deployment strategies. The 
material used in this study was made up of eight cloned full-sib progeny 
trials across some of the main radiata pine growing regions in New 
Zealand. Progeny were derived from a diverse genetic base of 61 par-
ents, which is crucial for estimating GxE at the population level. Such 
well-connected RPBC clonal breeding data have not been available for 
GxE analysis in New Zealand previously. This study found that additive 
genetic correlations in marker-based models were moderate to high 
(mean = 0.76, range = 0.56–0.95) in DBH and high in DEN (mean =
0.94, range = 0.86–0.99). 

Genetic correlations between trial sites were higher than most re-
ported in the literature (Carson, 1991; Cullis et al., 2014; Johnson and 
Burdon, 1990; Li et al., 2018; McDonald and Apiolaza, 2009). Growth 
traits tend to have a higher GxE compared to wood quality traits 
(Apiolaza, 2012), however, most studies that report high GxE for growth 
traits have also had poor connectedness between trials. Simulation 
studies have found that at least 30% of clones or 50 families (with 10 sibs 
per family) need to be in common between environments to accurately 
estimate GxE and lower connectedness leads to lower estimates of ge-
netic correlations and higher standard errors (Li et al., 2018). 

Cullis et al. (2014) reported significant GxE with a mean correlation 
of 0.54 and 25% of correlations being lower than 0.37 in New Zealand 
and Australia. However, the 77 trials (including some sites in Australia) 
in the Cullis et al. (2014) study were poorly connected and spanned 
multiple breeding generations, with the majority of trial pairs having no 

Fig. 5. Summary of heritability estimates across different trial sites.  
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parents in common. Stem volume, which is the breeding objective trait 
linked to DBH, has been reported to have a genetic correlation range of 
0.16–0.96 across four sites in the North Island (Johnson and Burdon, 
1990) The largest GxE study for radiata pine in New Zealand across 76 
trials found that GxE interaction for DBH was significant, with a genetic 
correlation range of − 0.8–1 with a mean of 0.49 (McDonald & Apiolaza, 
2009). When the dataset used by McDonald and Apiolaza (2009) was 
filtered to a threshold of 50 families in common (17 out of 76 environ-
ments), it raised the mean genetic correlation from 0.49 to 0.60, which is 
closer to estimates in our study. Analysis of three trials in New Zealand 
with very high connectedness (87% clones in common) had a mean 
correlation of 0.82 (Baltunis & Brawner, 2010). 

4.2. Regionalising breeding and deployment programs 

Regionalised breeding has been successfully implemented for native 
loblolly pine (Pinus taeda) in the South-Eastern United States (Isik and 
McKeand, 2019) and native white spruce in Canada (Picea glauca) 
(Cappa et al., 2022; Weng et al., 2019). According to this study, the 
levels of GxE interactions were not high enough to justify the region-
alisation for the North Island deployment area. More trials from the 
South Island would need to be included to draw conclusions for the 
entire country. To justify regionalised breeding, there is a requirement 
for consistent evidence of low correlation between clusters of environ-
mental variables or regions, evidence of improved genetic gain and a 
greater cost-benefit to the wider industry or breeding program. Detailed 
economic analysis and genetic gain comparisons were beyond the scope 
of this study. The Cullis et al. (2014) study, which included trials from 

Fig. 6. Additive genetic correlations between sites.  

Table 3 
Spearman’s rank correlations for rankings using different genetic evaluation models.  

Model GBLUP_A GBLUP_ANA PBLUP_A PBLUP_ANA PBLUP-U_A PBLUP-U_ANA 

GBLUP_A    0.9996  0.9644  0.9642  0.9644  0.9642 
GBLUP_ANA  0.9999    0.9669  0.9669  0.9669  0.9669 
PBLUP_A  0.9876  0.9876    0.9998  1.0000  0.9998 
PBLUP_ANA  0.9876  0.9877  1.0000    0.9998  1.0000 
PBLUP-U_A  0.9876  0.9876  1.0000  1.0000    0.9998 
PBLUP-U_ANA  0.9876  0.9877  1.0000  1.0000  1.0000   

Note: DBH is represented in the upper diagonal and DEN is represented in the lower diagonal. ‘ANA’ = additive + non-additive model, ‘A’ = additive only model 
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NZ and New South Wales in Australia, showed low correlations between 
poorly connected trials. Further, there was no obvious clustering of trials 
based on geography. Studies with high GxE for DBH found that 
regionalizing the radiata pine breeding program would come at a sig-
nificant economic cost and would require smaller regional breeding 
populations with lower selection intensity and less genetic gain 
compared to a single national program (Carson, 1991). Johnson and 
Burdon (1990) found evidence of high GxE between clay soils in 
Northland and pumice soils of the Central North Island but regionalising 
the breeding program to accommodate this would result in a genetic 
gain increase from 22% to 24% with a significant economic cost. In 
Australia, regionalising radiata pine breeding programs between high 
and genetic gains were almost double in a regionalised program 
compared to a national program. However, this study did not include an 
economic analysis (Wu and Matheson, 2005). 

Regional breeding values obtained from a nationwide breeding 
program’s multi-environmental data can be used to select seed orchard 
parents and genotypes for somatic embryogenesis (SE) in regionalised 
deployment. Regionalised deployment may be more pragmatic than 
regionalised breeding if control-pollinated seedlots and/or clonal 
deployment are utilised instead of open-pollinated seedlots (Johnson 
and Burdon, 1990). This is because control-pollinated seedlots are 
created by selection of both seed orchard’s parents that have high 
breeding values for a targeted environment (e.g for disease-prone re-
gions). GS-led deployment (with early prediction of unknown pheno-
types) has been shown to significantly improve genetic gain in 
simulation-based studies in seed orchard and clonal deployment path-
ways (McLean et al., 2023). This information can be used to select 
parental combinations based on regionalised breeding values in a 
control-pollinated orchard. Genotypes recovered through SE (Walter 
et al., 2005) can be tested directly in specific forest estates, which allows 
for better evaluation of highly-specific local adaptations compared to 
seed orchard deployment (Carson, 1986). Scaling up the propagation 
and establishment of locally-tested SE clones can be used to exploit both 
non-additive genetic and GxE effects, particulary for growth. Genomic 
selection of somatic embryogenesis clones is often used at the tissue 
culture phase to decide which genotypes are cryo-banked before further 
field testing. This takes advantage of high selection intensity and 
within-family selection from mendelian sampling term estimates. Clonal 
deployment with GS and no field testing is feasible in theory but has 
never been implemented because of the financial risk of clonal growth 
defects such as resin bleeding or internal checking (McLean et al., 2023). 
However, clonal deployment might be more suitable for regionalised 
deployment compared to seed orchard options. 

4.3. Characterising environmental variables 

The use of an extra factor explained a large proportion of extra ad-
ditive genetic variance for three of the sites. These three sites had a 
higher correlation amongst each other and were less correlated to those 
that did not benefit from the second factor. These three sites were quite 
geographically separated from the remaining sites situated in the North 
Island and were situated in non-pumice soil regions. 

Factor analytic models use unknown latent factors, so genotype-by- 
environment is observable rather than predictable. Incorporating envi-
ronmental covariates into the mixed-linear model could make genotype- 
by-environment predictable (Callister et al., 2024; Tolhurst et al., 2022), 
which could enhance genetic gain in deployment if environments are 
matched with genotypes (Dutkowski et al., 2016). It has been estab-
lished that wood density has a positive relationship with average site 
temperature e.g. as observed by the latitudinal gradient in NZ, and the 
inclusion of site temperature increases the fit of a multi-environment 
model (Apiolaza, 2012). It has also been suggested that total rainfall, 
minimum and maximum temperatures are the biggest environmental 
drivers of DBH (Gapare et al., 2015; McDonald and Apiolaza, 2009). 
Studies in loblolly pine have shown that factor loadings had strong 

associations with temperature and rainfall that moved across a 
geographical gradient in the southeastern region of the United States of 
America (Lauer et al., 2021; Shalizi and Isik, 2019). Currently the RPBC 
tests material in New South Wales and Tasmania in Australia. Extending 
this study with a factor analysis to include Australia and more sites 
across the South Island could determine whether there is a significant 
interaction between the two countries or between the North and South 
Island. An extended factor analysis that includes well-connected trials 
and environmental information such as rainfall, temperature, and soil 
types across multiple trials may help determine the latent factors that 
drive GxE and better inform future regional deployment. 

4.4. GxE and genomics 

When phenotypic information and genomic information is available 
we found that marker-based models appear to provide a slightly better 
fit (based on AIC) compared to uncorrected pedigree-based models for 
this dataset. Unlike marker-based relationship matrices, pedigree-based 
relationships do not account for the Mendelian sampling term or his-
torical connectedness and this can result in biased estimates of GxE and 
inflated additive variance estimation (Beaulieu et al., 2022). The infla-
ted additive variance estimation likely overinflated breeding value ac-
curacy and reliability for pedigree-based models in this study. In a small 
GxE study (two environments) of Norway spruce (Picea abies) AIC values 
were similar in marker-based and pedigree-based models (Chen et al., 
2019). However, in a study of white spruce studies using four environ-
ments, AIC values indicated that GBLUP models had a better fit 
compared to pedigree-based models for most selection criteria (Beaulieu 
et al., 2020; Walker et al., 2022). 

It is notable that the comparison between marker- and pedigree- 
based models in estimating GxE and variance components is depen-
dent on numerous factors including the number of families/progenies, 
the number of environments, presence of pedigree errors and the reli-
ability/density of SNPs. In this study the presence of errors in the un-
corrected pedigree reduced the model fit and overestimated variance 
components as compared to a corrected-pedigree model. We found that 
heritability estimates decreased when moving from uncorrected pedi-
gree models to marker-corrected pedigree models, and further decreased 
when using a marker-based model. This agrees with other radiata pine 
studies (Li et al., 2019) and meta-analyses of conifers (Beaulieu et al., 
2022). Research on the same population used in this study has shown 
that correcting the pedigree information can increase the accuracy of a 
pedigree-based relationship matrix (PBLUP) model by 0.07 (Klápště 
et al., 2022). This improvement in accuracy has been shown to enhance 
the reliability of using a SNP-corrected pedigree-BLUP model to analyse 
genotype-by-environment interactions (GxE). Other studies have used 
single-step BLUP models to combine pedigree and marker information to 
estimate GxE in lodgepole pine (Pinus contorta) and this could also be 
evaluated in radiata pine (Ukrainetz and Mansfield, 2020). The ability to 
predict breeding values in an environment where phenotypes are un-
known, using genomic and phenotypic information from another envi-
ronment, is closely correlated with Type-B correlations (Gamal El-Dien 
et al., 2015), and SNP density is closely linked with predictive ability 
(Klápště et al., 2022). Therefore, further research could examine the link 
between SNP density and GxE. 

GxE has been characterised in numerous conifer breeding programs. 
Genomics with or without phenotypes can be used to estimate genetic 
correlations between environments or to identify SNP effects that 
change between environments. In radiata pine, SNP associations with 
selection criteria of interest have been shown to be significant in some 
environments but not in others (Li et al., 2016). In interior spruce sit-
uated in Canada, multi-site models with GxE accounted for produced 
higher prediction accuracies for growth and wood quality selection 
criteria compared to a single site model when predicting phenotypes in 
different sites (Gamal El-Dien et al., 2015). In Norway spruce, 
genomic-estimated GxE was found to be moderate for growth selection 
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criteria (rg = 0.52–0.56) and high for multi-trait growth/wood quality 
(rg <0.43) between two different sites in Canada (Lenz et al., 2020). 

4.5. GxE and non-additive variance 

The benefit of including non-additive genetic variance components 
was marginal in marker-based models and worsened the fit of pedigree- 
based models. A higher degree of non-additive genetic variance was 
identified in low-heritability DBH compared to high-heritability DEN 
which is consistent with other research (Burdon et al., 1992). However, 
non-additive genetic variance components only accounted for 8.7% and 
3.6% of the total genetic variance for DBH and DEN in marker-based 
models, respectively. Disentangling epistatic and dominance variance 
from additive variance accurately usually relies on mating design, well 
replicated trials with an extensive number of genotypes with the in-
clusion of genotyped/phenotyped parents. In radiata pine, dominance 
has been found to be fairly negligible past the age of seven (Dean et al., 
2006). Other studies have found that the inclusion of dominance slightly 
improved the AIC and predictive ability in GxE marker-based models. 
However, significant dominance effects were predicted in one site 
whereas the other had limited dominance effects (Chen et al., 2019). In 
this study, no site demonstrated any significant non-additive genetic 
effects. However, it must be noted that this study was limited by small 
family sizes to estimate non-additive effects well. 

5. Conclusions 

This study used a well-connected, replicated dataset across multiple 
trial sites to assess the level of GxE to inform radiata pine breeding 
program and deployment strategies. We found that GxE was low- 
moderate in DBH and low in DEN when using marker-based models. 
Poor representation of target environments may result in poor predic-
tion models if GxE is present. While GxE is present, its magnitude does 
not warrant a regionalised breeding strategy for the North Island 
deployment area. However, this does not exclude the use of regionalised 
deployment, which is a more pragmatic approach to manage GxE in NZ 
radiata pine. Clonal (SE) deployment can more easily exploit GxE than 
family forestry as it can utilise clonal testing and maximise gain over a 
local scale. Marker-based models had only a marginally better fit 
compared to marker-corrected and uncorrected pedigree-based models. 

The inclusion of non-additive genetic effects had no major impact on the 
model and did not cause changes in genotype rank. Future research 
could focus on identifying the underlying environmental variables that 
drive GxE in radiata pine to improve GS evaluation models and better 
inform deployment decisions. 
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Appendix  

Appendix 1 Summary of Model Fit Statistics with Different Additive Variance-Covariance Structures and Non-Additive Variance Components  

Selection Criteria Model Additive Model Non-Additive Component (Y/N) AIC Log-likelihood 

DBH GBLUP FA1 Y 159,254.1 -79,576.03 
DBH GBLUP FA1 N 159,207.5 -79,545.76 
DBH GBLUP FA2 Y 159,207.5 -79,545.76 
DBH GBLUP FA2 N 159,209.0 -79,554.49 
DBH PBLUP FA1 Y 159,268.3 -79,583.16 
DBH PBLUP FA1 N 159,270.9 -79,592.44 
DBH PBLUP FA2 Y 159,231.3 -79,557.63 
DBH PBLUP FA2 N 159,224.8 -79,562.41 
DBH PBLUP-U FA1 Y 159,342.0 -79,619.97 
DBH PBLUP-U FA1 N 159,351.4 -79,632.70 
DBH PBLUP-U FA2 Y 159,304.7 -79,595.37 
DBH PBLUP-U FA2 N 159,302.3 -79,602.14 
DEN GBLUP FA1 Y 115,460.7 -57,679.35 
DEN GBLUP FA1 N 115,458.6 -57,686.28 
DEN GBLUP FA2 Y 115,459.0 -57,671.48 
DEN GBLUP FA2 N 115,458.0 -57,679.01 
DEN PBLUP FA1 Y 115,494.5 -57,696.24 
DEN PBLUP FA1 N 115,484.9 -57,699.45 
DEN PBLUP FA2 Y 115,488.6 -57,686.32 
DEN PBLUP FA2 N 115,480.9 -57,690.46 
DEN PBLUP-U FA1 Y 115,621.1 -57,759.55 
DEN PBLUP-U FA1 N 115,618.9 -57,766.45 

(continued on next page) 
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(continued ) 

Selection Criteria Model Additive Model Non-Additive Component (Y/N) AIC Log-likelihood 

DEN PBLUP-U FA2 Y 115,617.3 -57,750.65 
DEN PBLUP-U FA2 N 115,615.2 -57,757.62   

Appendix 2 – Summary of Variance Components for Different Models and Selection Criteria for Each Site  

Model SC Site h2 H2 σ2
a σ2

na σ2
e 

GBLUP DBH BC59_1  0.27 
(0.006)  

0.30 
(0.007)  

163.08  22.65 424.43 

GBLUP DBH BC52_1  0.22 
(0.009)  

0.27 
(0.011)  

281.13  53.19 931.37 

GBLUP DBH BC52_3  0.26 
(0.008)  

0.28 
(0.008)  

138.62  11.86 384.19 

GBLUP DBH BC52_4  0.33 
(0.008)  

0.33 
(0.008)  

294.57  0.00 593.65 

GBLUP DBH BC52_5  0.14 
(0.009)  

0.14 
(0.010)  

119.69  3.83 757.77 

GBLUP DBH BC52_6  0.07 
(0.003)  

0.07 
(0.003)  

126.45  0.00 1674.66 

GBLUP DBH BC55_2  0.21 
(0.006)  

0.23 
(0.007)  

89.84  12.08 332.47 

GBLUP DBH BC55_3  0.30 
(0.008)  

0.34 
(0.009)  

266.00  37.55 575.38 

PBLUP DBH BC59_1  0.30 
(0.010)  

0.33 
(0.010)  

187.92  25.12 423.80 

PBLUP DBH BC52_1  0.26 
(0.021)  

0.30 
(0.022)  

343.04  44.47 932.62 

PBLUP DBH BC52_3  0.32 
(0.011)  

0.32 
(0.011)  

181.47  0.00 384.30 

PBLUP DBH BC52_4  0.37 
(0.014)  

0.37 
(0.015)  

355.28  0.00 600.47 

PBLUP DBH BC52_5  0.16 
(0.012)  

0.16 
(0.013)  

143.07  3.58 757.61 

PBLUP DBH BC52_6  0.08 
(0.016)  

0.08 
(0.016)  

136.83  3.06 1666.64 

PBLUP DBH BC55_2  0.27 
(0.012)  

0.27 
(0.012)  

119.90  3.69 330.42 

PBLUP DBH BC55_3  0.33 
(0.008)  

0.37 
(0.008)  

309.76  34.88 576.15 

PBLUP-U DBH BC59_1  0.32 
(0.010)  

0.36 
(0.010)  

211.04  30.96 423.60 

PBLUP-U DBH BC52_1  0.29 
(0.021)  

0.32 
(0.022)  

390.77  50.91 933.06 

PBLUP-U DBH BC52_3  0.34 
(0.009)  

0.34 
(0.009)  

203.84  0.00 384.47 

PBLUP-U DBH BC52_4  0.40 
(0.013)  

0.40 
(0.013)  

395.61  0.00 600.39 

PBLUP-U DBH BC52_5  0.17 
(0.013)  

0.17 
(0.014)  

152.42  7.88 757.43 

PBLUP-U DBH BC52_6  0.09 
(0.017)  

0.09 
(0.018)  

157.39  0.59 1663.91 

PBLUP-U DBH BC55_2  0.28 
(0.012)  

0.29 
(0.012)  

126.03  7.83 332.03 

PBLUP-U DBH BC55_3  0.36 
(0.008)  

0.39 
(0.008)  

346.23  36.45 574.08 

GBLUP DEN BC59_1  0.47 
(0.007)  

0.48 
(0.008)  

123.64  4.82 137.02 

GBLUP DEN BC52_1  0.39 
(0.010)  

0.40 
(0.011)  

126.32  6.32 201.55 

GBLUP DEN BC52_3  0.36 
(0.009)  

0.37 
(0.009)  

176.65  8.24 303.46 

GBLUP DEN BC52_4  0.53 
(0.009)  

0.57 
(0.009)  

281.34  21.48 247.86 

GBLUP DEN BC52_5  0.42 
(0.011)  

0.43 
(0.011)  

169.74  4.18 229.15 

GBLUP DEN BC52_6  0.48 
(0.003)  

0.48 
(0.003)  

224.41  2.67 225.99 

GBLUP DEN BC55_2  0.61 
(0.007)  

0.64 
(0.007)  

312.17  13.42 189.66 

GBLUP DEN BC55_3  0.53 
(0.009)  

0.53 
(0.010)  

197.34  0.00 166.44 

PBLUP DEN BC59_1  0.51 
(0.010)  

0.51 
(0.010)  

142.18  1.13 136.27 

PBLUP DEN BC52_1  0.41 
(0.022)  

0.42 
(0.022)  

141.05  4.13 202.50 

(continued on next page) 
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(continued ) 

Model SC Site h2 H2 σ2
a σ2

na σ2
e 

PBLUP DEN BC52_3  0.39 
(0.012)  

0.40 
(0.013)  

193.91  6.30 303.04 

PBLUP DEN BC52_4  0.55 
(0.013)  

0.57 
(0.013)  

314.29  14.55 248.49 

PBLUP DEN BC52_5  0.44 
(0.012)  

0.45 
(0.013)  

184.96  2.93 229.32 

PBLUP DEN BC52_6  0.49 
(0.015)  

0.52 
(0.016)  

232.00  12.93 226.81 

PBLUP DEN BC55_2  0.64 
(0.011)  

0.64 
(0.011)  

348.93  0.00 189.34 

PBLUP DEN BC55_3  0.56 
(0.008)  

0.56 
(0.008)  

215.41  0.00 165.90 

PBLUP-U DEN BC59_1  0.54 
(0.007)  

0.55 
(0.008)  

163.71  1.01 136.35 

PBLUP-U DEN BC52_1  0.44 
(0.011)  

0.46 
(0.012)  

162.44  4.66 203.06 

PBLUP-U DEN BC52_3  0.41 
(0.009)  

0.42 
(0.009)  

223.93  6.50 303.24 

PBLUP-U DEN BC52_4  0.57 
(0.009)  

0.61 
(0.009)  

351.00  22.66 248.49 

PBLUP-U DEN BC52_5  0.45 
(0.011)  

0.48 
(0.012)  

199.11  12.03 229.24 

PBLUP-U DEN BC52_6  0.52 
(0.003)  

0.54 
(0.003)  

268.86  12.80 227.07 

PBLUP-U DEN BC55_2  0.67 
(0.008)  

0.70 
(0.008)  

403.08  16.91 189.31 

PBLUP-U DEN BC55_3  0.59 
(0.009)  

0.59 
(0.010)  

246.39  0.00 166.06 

Note: SC = selection criteria, σ2
a = additive variance, σ2

na = non-additive variance, σ2
e = residual variance, rA (A) = mean additive genetic correlation between sites for 

model with additive variance components only (range in parentheses), rA (ANA) = mean additive genetic correlation between sites for model with both additive 
variance and non-additive components (range in parentheses). Standard errors for heritabilities are given in parentheses. 
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