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Incorporating economic weights into radiata pine breeding
selection decisions
David C. Evison and Luis A. Apiolaza

Abstract: This article introduces the concept of “robust selection”, which proposes tree selection based on the stochastic
simulation of economic values to account for the inherent uncertainty of economic weights used in tree selection for
breeding programs. The proposed method uses both median ranking and ranking variability as criteria for breeding
selection. Using consensus genetic and economic parameters from the New Zealand Radiata Pine Breeding Company
program, we compare three selection strategies: deterministic application of economic weights from a vertically integrated
bioeconomic model, an equal-weight index often used in operations, and robust selection. All strategies aim to increase
value for a breeding objective that includes four traits, i.e., volume, stem sweep, branch size, and wood stiffness (measured
as modulus of elasticity), based on a selection index that considers five criteria, i.e., stem diameter at breast height (1.3 m),
straightness, branching score, wood density, and modulus of elasticity. Two-thirds of the selected trees were unique for
each of the selection strategies. Robust selection achieved the best realised gain for three of the four selection criteria and
was the middle performer in the last selection criteria. Considering the high intrinsic uncertainty of economic weights, we
suggest that the relevant criterion for the selection of individuals is the maximum median ranking, subject to an acceptable
level of variation in that ranking, rather than their narrow performance under a single economic scenario. This will lead
to tree selections that perform well under a wide range of economic circumstances.
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Résumé : Cet article introduit le concept de « sélection robuste » qui propose une sélection fondée sur la simulation stochastique
de la valeur économique pour tenir compte de l'incertitude inhérente du poids économique utilisé pour la sélection des arbres
dans les programmes d'amélioration. La méthode qui est proposée utilise le classement médian et la variabilité du classement
comme critères pour la sélection. À l'aide de paramètres génétiques et économiques du programme de la New Zealand Radiata
Pine Breeding Company qui font consensus, nous avons comparé trois stratégies de sélection : l'application déterministique du
poids économique provenant d'un modèle bioéconomique verticalement intégré, un indice de poids équivalent souvent utilisé
dans les opérations et la sélection robuste. Toutes les stratégies visent à augmenter la valeur d'un objectif d'amélioration qui
inclut le volume, la courbure du tronc, la dimension des branches et la rigidité du bois à partir d'un indice de sélection qui tient
compte du diamètre du tronc, de sa rectitude, de la note de branchaison, de la densité du bois et du module d'élasticité. Les deux
tiers des arbres sélectionnés avec chacune des stratégies étaient uniques. La sélection robuste a produit le meilleur gain pour
trois des quatre critères de sélection et occupe la position intermédiaire pour l'autre critère. En tenant compte de l'importante
incertitude intrinsèque du poids économique, nous suggérons que le critère pertinent pour la sélection des individus soit le
classement médian maximum, qui est sujet à un degré acceptable de variation dans ce classement, plutôt que leur performance
étroite dans le cadre d'un seul scénario économique. Cela va engendrer la sélection d'individus qui performent bien dans une
vaste gamme de conditions économiques. [Traduit par la Rédaction]

Mots-clés : objectifs d'amélioration, poids économique, simulation, évaluation économique, analyse de risques.

Introduction
The selection of superior trees is central to breeding programs,

aiming to identify individuals with maximum economic–genetic
value for a combination of characteristics of economic impor-
tance. These trees are mated to produce the next generation and
deployed in commercial forests. Optimal selection decisions de-
pend not only on the economic relevance of each trait, but also on
many estimates of their genetic parameters, including heritabili-
ties and genetic correlations (Hazel 1943; Schneeberger et al. 1992;
Van Vleck 1993).

The New Zealand forest industry has used selection indices
since the mid-1970s (Burdon 1979) but initially focussed on collect-
ing data to estimate genetic parameters, while relying on crude
estimates of economic weights, e.g., 2 for growth and 1 for basic

density (see Cotterill and Jackson (1985) for alternative methods).
Although the incorporation of economic information into the
selection of trees for breeding is supported both on theoretical
and on logical grounds, it has not been implemented fully by tree
breeders (see Apiolaza and Greaves (2001) for common reasons).
Formal estimation of economic weights was first attempted for
eucalypts in the early 1990s (Borralho et al. 1993), and modelling
the economic importance of radiata pine (Pinus radiata D. Don)
traits started in the late 1990s (e.g., Chambers and Borralho 1999;
Apiolaza and Garrick 2001; Ivković et al. 2006b). In spite of a sig-
nificant volume of research on this topic, both researchers and
the industry still feel more comfortable (or less uncomfortable)
dealing with genetic parameters than economic weights. Both
genetic and economic parameters are subject to substantial un-
certainty for the following reasons.
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1. The genetic architecture of the traits, i.e., their variability,
genetic control, and association between traits, is subject to
uncertainty, because they are estimates that are obtained
from different samples of genotypes, growing in different sites
and over a long period of time.

2. There are gaps in the available genetic information, particu-
larly if a trait has only recently been identified as important,
and filling those gaps may take decades, particularly for age–
age correlations.

3. Economic values are subject to a high degree of uncertainty, as
they will be realised several decades in the future. Even for
relatively fast-growing tree species such as radiata pine, the
lag between breeding decision making and realisation of value
from harvested trees can be 50 years or more.

4. The forest growers, who are the ultimate customers of tree
breeders, may have different views of the future, different
silvicultural strategies, and different target products or mar-
kets.

5. A particular selection may be deployed for a number of years,
and over the period that this population is harvested, the tech-
nology and market requirements may change.

Although the uncertainty associated with genetic parameters
might be reduced through additional data and analysis, the un-
certainty in economic parameters is unavoidable, because it is
generated by the necessarily long time frames from selection to
harvest of the improved crop and the different views of the future
among forest growers who will use the improved seed. The long
time frames make this a much larger issue for tree breeding than
for animal breeding, where selection index theory was initially
developed. Selection methodologies that account for this inher-
ent uncertainty in tree breeding are required.

Bioeconomic models, which show the relationship between
changes in the management of the resource and the subsequent
quality and quantity of output from the forest, have been the most
popular approach used to estimate economic weights in tree
breeding. Ivković et al. (2006b) constructed separate bioeconomic
models for a forest grower, a processor, and an integrated firm
and obtained different values for the economic weights, mirror-
ing the experience of animal breeders, as discussed by Goddard
(1998). For a discussion of other methods of calculating economic
weights in tree breeding, see Alzamora (2010).

This paper outlines an alternative approach to incorporating
economic information into selection decisions. We use genetic
and economic data for radiata pine in New Zealand to first calcu-
late deterministic selection index coefficients. This was followed
by the introduction of a simulation approach to the use of eco-
nomic weights and a proposal for the selection of “robust” geno-
types that are stable (in the sense of being highly ranked
performers) under the likely variation in economic-weight values.

Materials and methods
Selection indices combine the predicted breeding values (si; of-

ten called the best linear unbiased prediction (BLUP)) of multiple
traits for each individual to calculate the following index I on
which to base the selection:

I � b1s1 � b2s2 � … � bnsn � b ′s

where s is a vector of breeding values for selection criteria (often
assessed at 1/4 to 1/3 of rotation age), and b is the vector of index
coefficients. When selecting on index values, breeders aim to
maximise the following breeding-objective function H, a linear

combination of the genetic values for each trait (ai) weighted by
their economic values vi (value per unit of increase in the trait):

H � v1a1 � v2a2 � … � vnan � v ′a

where v is the vector of economic values, and a is the vector of
genetic values for the traits that we wish to improve (often at
rotation age). Therefore, H represents the genetic–economic worth
of an individual. The index coefficients (b) that maximise the cor-
relation between I and H are calculated as follows (Schneeberger
et al. 1992):

(1) b � Gss
�1Gsov

where Gss and Gso are the additive covariance matrix for selection
criteria and the additive covariance matrix between selection cri-
teria and objective traits, respectively, and the b coefficients com-
bine genetic and economic information (heritabilities, genetic
correlations, and economic weights). Equation 1 is an extension of
Hazel's (1943) and van Vleck's (1993) work.

Selection indices link characteristics that breeders would like
to improve (objective traits in H) with the characteristics that they
assess (selection criteria in I). This distinction is very relevant for
tree breeders, because they often use criteria that are expressed
early in the life of the trees and easier to assess than objective
traits. For example, radiata pine progeny trials are routinely as-
sessed for diameter at breast height (1.3 m) at age eight, rather
than for volume at rotation age.

These indices assume that Gss, Gso, and v are known with cer-
tainty; however, we have already pointed out that genetic and,
particularly, economic parameters are subject to much uncer-
tainty. Because the sources of uncertainty of economic parame-
ters are largely related to the long time frames and the different
views of the future that may be held by those who plant improved
seed, they are not able to be removed through further analysis.
Therefore, selection decisions should recognise the inherent un-
certainty in the estimation and application of economic weights.
What is required is the best estimate of the economic value of the
trait and an estimate of the uncertainty in these estimates.

We propose a method, which we call “robust selection”, that uses
(i) economic weights drawn from distributions centred around pub-
lished values to calculate selection index coefficients and (ii) the
selection of individuals that have both high rankings and a low
ranking variability. Therefore, the selection process will involve n
times of (i) drawing a set of economic weights, (ii) calculating
coefficients using eq. 1, (iii) applying the index to all trees, and
(iv) ranking the trees. Then, trees are evaluated on the basis of
their median ranking across all draws of economic weights, sub-
ject to a ranking variability that is lower than a predetermined
threshold.

Robust selection will be compared with the deterministic appli-
cation of economic weights calculated by Ivković et al. (2006a),
using the estimates for the integrated direct sawlog option pre-
sented in Table 1 and an equal-weight index often used by the New
Zealand Radiata Pine Breeding Company (where all coefficients of
b are equal to 1) for selecting trees for breeding from an elite
population.

We assume that all genetic parameters in Gss and Gso are known
without error to focus the comparison only on varying economic
weights. Robust selection was implemented using the R statistical
system (R Core Team 2014), and both the code and the breeding
values used in the test are available in the Supplementary material1.

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfr-2014-0363: cjfr-2014-
0363suppl.zip contains the R code and the data set.
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To illustrate the proposed method, we have assumed a mini-
mum value of zero and a maximum value of twice the mean value
for each trait with a positive mean value. For a trait with a nega-
tive mean value, the maximum value was assumed to be zero, and
the minimum value was assumed to be twice the mean value. A
triangular distribution was used for each trait (see Fig. 1).

Although this assumed level of variation is somewhat arbitrary,
it is supported by the variation in economic weights from bioeco-
nomic models (e.g., see Table 1). It seems intuitively reasonable to
assume for wood-quality traits that the trait has no economic value at
the minimum point on the distribution. To ensure a symmetrical
distribution, the maximum point on the distribution is a value
that is double the mean estimate.

The economic weights shown in Table 1 were used in the anal-
ysis, except that for volume, their units were changed from m3·tree–1

to m3·ha–1 by using a scaling factor of 350 trees·ha–1 to expand
volume from tree level to hectare level, matching Ivković et al. (2010).

Genetic parameters
“Consensus” or “accepted” genetic parameters for selection cri-

teria and objective traits for the New Zealand Radiata Pine Breeding
Company program are presented in Tables 2–4. This information is
exactly as presented by Ivković et al. (2010); however, Table 4 con-
tains updated phenotypic variances for objective traits, as they
were incorrectly reported in 2010 (S. Kumar, personal communi-
cation).

Breeding values
We will test the performance of the different selection indices

by applying them to a preliminary set of 481 candidates of a 2007
elite population. This population was a selection of approximately
10 individuals from 50 families, which were from the 268 progeny
trial, compartment 1350, Kaingaroa Forest (P. Jefferson, personal
communication) For each tree, there are predicted breeding val-
ues (univariate BLUP, expressed as deviation from the overall pop-

ulation mean) for stem diameter at breast height, stem straightness,
branching habit, wood basic density, and modulus of elasticity
(estimated using time-of-flight acoustic tools). The data set is pre-
sented in the Supplementary material1; however, the genetic identi-
ties have been changed.

Results
We will show the results using three alternatives for incorpo-

rating economic weights into selection decisions. Selection index
coefficients were calculated using deterministic economic weights
for a direct sawlog vertically integrated regime and equal index
weights using data from Tables 1 to 4. The indices were applied to
the breeding values for all genotypes, which were then ranked in
decreasing order of index value. This is the standard implementa-

Table 1. Economic weights for New Zealand radiata pine based on the
three different viewpoints.

Objective traits

Viewpoint Regime Volume SWE BRS MOE

Grower Direct sawlog 12.42 −40.88 −9.2 387.6
Minimum tending 9.031 −53.85 −63.06 497.4

Sawmiller Direct sawlog −0.0065 −2.958 −0.416 8.25
Minimum tending 0.0346 −6.5 −2 14.25

Integrated Direct sawlog 12.14 −499.3 −54.94 700.1
Minimum tending 17.97 −1087 −186.5 1242

Note: SWE, stem sweep; BRS, branch size; MOE, modulus of elasticity.

Fig. 1. The assumed distributions for economic weights.

Table 2. Additive genetic correlation among selec-
tion criteria.

DBH08 STR08 BR08 DEN08 MOE08

DBH08 1 0.05 0.29 −0.25 −0.35
STR08 1 0.15 0.05 0.05
BR08 1 −0.05 −0.10
DEN08 1 0.48
MOE08 1

Note: For all selection criteria, trees were accessed at age 8.
DBH, diameter at breast height; STR, straightness; BR, branch-
ing score; DEN, wood density; MOE, modulus of elasticity.

Table 3. Additive genetic correlations between selec-
tion criteria and objective traits.

Objective traits

Selection
criteria VOL25 SWE25 BIX25 MOE25

DBH08 0.70 0.10 0.45 −0.30
STR08 0.14 −0.70 0.05 −0.10
BR908 0.15 0.05 −0.70 −0.11
DEN08 −0.19 0.09 −0.11 0.45
MOE08 −0.20 −0.25 −0.14 0.70

Note: For selection criteria, trees were accessed at age 8. Ob-
jective traits were accessed at age 25. Trait BR9 was the assess-
ment of branching on a 9 point scale. VOL, volume; SWE, stem
sweep; BIX, branch index; MOE, modulus of elasticity; DBH, di-
ameter at breast height; STR, straightness; BR, branching score;
DEN, wood density; MOE, modulus of elasticity.

Table 4. Heritability and variance
components for selection criteria
and objective traits.

h2 �p
2 �a

2 � �p
2 h2

Selection criteria
DBH08 0.18 1100 198
STR08 0.25 3.8 0.95
BR08 0.35 4.7 1.65
DEN08 0.65 552 358.8
MOE08 0.55 2.08 1.14

Objective traits
VOL25 0.25 0.3 0.08
SWE25 0.14 0.49 0.07
BIX25 0.15 95 14.25
MOE25 0.40 1.7 0.68

Note: h2 is the heritability of the trait, �p
2

is the phenotypic variability, and �a
2 � �p

2 h2

is the additive genetic variance. DBH, diam-
eter at breast height; STR, straightness; BR,
branching score; DEN, wood density; MOE,
modulus of elasticity; VOL, volume; SWE,
stem sweep; BIX, branch index.
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tion of economic weights in a breeding program. Figure 2 shows a
simple ranking based on index value, with some obvious candi-
dates for selection, some obvious candidates for rejection, and a
majority of genotypes with near average performance, where the
economic penalty for choosing the next lowest ranked candidate
is relatively small.

In the case of robust selection, the assumed triangular distribu-
tion of economic weights was used to calculate the median rank-
ing and the range of rankings for these selections (Fig. 3). It should
be noted that the ranking distributions are highly skewed — we
are selecting from those individuals at the superior end of the
curve; therefore, most of their index values are high. Figure 3
shows that some of the selections made by maximising the selec-
tion index value are ranked highly throughout the range of eco-
nomic circumstances represented by the probability distributions
described above (e.g., trees 140, 214, and 126), while others are
ranked much more poorly in some economic circumstances (e.g.,
trees 96, 341, 151, 207, 253, and 18).

Robust selection targets genotypes that avoid the wide range of
rankings displayed by some of the selections chosen by simply
maximising the selection index value. It does this by selecting the
individuals with the largest median ranking, while making that
selection subject to an acceptable threshold of ranking variability.

The second selection reduces the variability considerably. If we
look at the top 42 trees in terms of their mean index value (Fig. 4),
we can see again that there are a few top performers with high
rankings and low ranking variability (those within the shaded
rectangle); however, below that point, there is a clear trade-off
between median ranking and ranking variability.

Comparing conventional selection using economic weights
with robust selection and equal-weight selection (another method
often employed by tree breeders) shows that assumptions of fu-
ture economic circumstances certainly make a difference in terms
of the trees selected under each strategy (Fig. 5). Only 4 of the top
15 trees were common to all strategies, whereas 5–7 trees were
common to two strategies. At least 40% of the selections are
unique for each of the strategies.

Table 5 shows the genetic gain achieved under the three strat-
egies described above — robust selection provides the best gain
for three of the four traits and is the middle performer in the last
trait. When compared with the deterministic economic weights
for a direct sawlog regime, robust selection performs better for all
traits except volume. Equal weight selection is not recommended,
as the selection of values for weights is entirely arbitrary, ignoring

all economic information and genetic information generated by
progeny trials.

Discussion
Robust selection uses two decision criteria that are absent from

the standard implementation of economic weights. The imple-
mentation of the method focuses on ranking, rather than on the
selection index value. It is fundamental to the method to select
individuals with a low ranking variability. These are the individ-
uals that perform most reliably under the full range of economic
circumstances. Tree breeders always wish to select the individuals
that rank the highest. In robust selection, we propose selecting
those that have the maximum median ranking, subject to a pre-
determined ranking variability. Figure 6 shows that both the very
high and very low ranked individuals tend to have a low ranking
variability.

To implement robust selection, a probability distribution of
economic weights is required. Although these distributions have
been assumed in the example shown above, they could be pro-
vided from the results of sensitivity analysis conducted using a
bioeconomic model. A sensitivity analysis of this type would in-
clude historic variation in log prices and other data inputs. In
addition, we have assumed that there were no correlations be-

Fig. 2. Selection index values for all 482 individuals, ranked in
decreasing order.

Fig. 3. Violin plots of the distribution of ranking positions for the
top 10 selections, based on maximising the selection index value
under 1000 scenarios of economic weights.

Fig. 4. Top 42 individuals, based on the selection index value.
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tween the economic weights. However, if these correlations did
exist and were known, they could be accommodated by using the
standard tools of risk analysis.

A useful selection tool should (i) provide appropriate weight-
ings to reflect the relative importance of a number of different
traits, (ii) recognize the inherent uncertainty in economic infor-
mation, generated by the long time frames in tree breeding, in
both the breeding and deployment cycles, and the different objec-
tives of stakeholders (very relevant for breeding programs involv-
ing multiple firms), and (iii) lead to an agreement among members
on economic weights for breeding selection. The process of
implementing economic weights should include further anal-
ysis to investigate the impact of different choices of the prob-
ability distribution and mean value of economic weights.

As has been noted by Hoogstra and Schanz (2008), there is a
tendency among decision makers in forestry and in other busi-
ness areas to ignore uncertainty. This indicates a potential for a
much wider application of the methods outlined in this paper. For
example, the uncertainties in the economic values also exist for
the genetic parameters. We have assumed a perfect knowledge of
genetic parameters to emphasize the effect of uncertainty present
in economic information; however, the same approach could be
expanded to incorporate knowledge of the uncertainty of these
parameters as well. The methods outlined in this paper could also
be used to evaluate silvicultural and other investment options in
forestry where there is uncertainty about future values of input
data.

Conclusion
There has been an extensive research investment in New Zea-

land to enhance the selection of improved trees to increase the
competitive advantage of radiata pine and enhance the species
suitability and market acceptance in a range of end uses. Breeding
theory requires that the optimal selection of multiple traits uses
economic weights to specify the value of each trait. The focus of
implementation of economic weights to date has been to choose
the individuals that maximise the index value. Where the eco-
nomic weights and other inputs into the calculation of the index
are known with certainty, this method will provide the highest
ranked candidates.

Nevertheless, where input values are not certain, we contend
that the relevant criterion for the selection of individuals is the
maximum median ranking, subject to an acceptable level of vari-
ation in that ranking. This will provide the selections that are
most likely to be ranked high, under the full range of expected
future economic values. We have shown that there are a number
of reasons why there is inherent uncertainty in any estimate of
economic weights. We have also provided a method to implement
selection for breeding that will minimise the impact of this
uncertainty on the value of the final crop. This approach is
consistent with investment theory, which proposes that we
should not only consider the expected value of the return from
an investment but also the variability of that return, as a mea-
sure of risk.

The investment in tree improvement is significant, and the
methods that we are proposing will provide a more defensible
selection for the use of this investment by the industry in the
future and will lead to a more complete adoption of a rigorous
method of choosing among investment alternatives, taking into
account the information uncertainty.
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