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ABSTRACT 

Bivariate half-sib family data were simulated for 80 combinations of genetic parameters (heritability for trait 1, 
heritability for trait 2 and genetic correlation between the traits) and random subsampling for trait 2 (3,9, 15 and 
30 trees). The model effects were all random comprising 200 unrelated families with 30 individuals each, 
phenotypic variance of 1 for both traits and an environmental correlation of 0. The effect of subsampling was 
studied on: estimation of genetic parameters using restricted maximum likelihood (REML), best linear unbiased 
prediction (BLUP) of breeding values, and expected response to selection. The lowest subsampling intensity 
generated greater biases, poorer representation of the distribution and larger coefficients of variation for estimates 
of genetic correlation and heritability of trait 2. The correlation between 'true' and predicted breeding values 
for trait 2 had a direct relationship with subsampling intensity, heritability of the trait, and genetic correlation 
between traits 1 and 2. Even when the multivariate analysis increased the accuracy of prediction the correlation 
for trait 1 was only slightly affected. Direct response to index selection was depressed by low subsampling 
intensities, in a degree dependent on the heritabilities of the traits. Low subsampling boosted correlated 
responses for trait 1 and depressed those for trait 2. Truncation selection, subsampling trait 2 only in the top 
families for trait 1, was used with a specific set of parameters. This option produced the worst estimates and 
predictions. In summary, increasing the subsampled intensity gave progressively diminishing benefit, with little 
effect over 15 trees. A potential for improved cost-efficiency is thus confirmed. 
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INTRODUCTION 

Tree performance is typicalily a multi-trait function. For 
efficient genetic improvement good estimates of genetic 
parameters for the traits concerned are usually needed, 
to identify feasible breeding goals and to develop 
efficient selection procedures. These genetic parameters 
are encapsulated in the phenotypic (P) and genetic ( G )  
variance-covariance matrices. Estimation of genetic 
parameters will always entail some form of population 
sampling. Often the sample will represent all trees in a 
progeny trial, but if a trait is very expensive to evaluate 
on individual trees subsampling is attractive, if not a 
necessity. 

For selection, the cost-efficiency of sampling of the 
available trees can be of twofold importance. In addition 
to affording the good genetic parameters estimates that 
are often needed for constructing reliable selection 
indices, can allow good estimates of breeding values that 
may be needed for some traits. 

Research in the last few years have confirmed the 
need for simultaneously considering growth traits and 

wood properties (BORRALHO et al. 1993, GREAVES & 
BORRALHO 1996, GREAVES et al. 1997, SHELBOURNE 
et al. 1997), making the issue of sampling more impor- 
tant. While wood properties may be important there is 
often a limited knowledge of their genetic parameters, 
especially the between-trait genetic correlations. 
Estimates of genetic parameters are usually obtained 
from analysis of progeny-test data using covariances 
among collateral relatives, e.g. half-sibs. While assess- 
ment of growth traits (usually of low heritability) in all 
the individuals of a progeny test is generally cheap and 
easy, satisfactory assessment of wood properties 
(usually highly heritable) is typically very costly per 
tree sampled. Accordingly it is usually appropriate to 
assess subsamples of relatively few individuals for the 
wood properties, whereas many more individuals may 
be needed for providing good estimates of genetic 
parameters and breeding values for growth and form 
traits. 

Several studies have focused on behaviour, in 
relation to sample size, of estimates of variance and 
covariance components, and thence of genetic correla- 
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tion estimates. For example, ROBERTSON (1959), VAN 
VLECK and HENDERSON (1961), BROWN (1969), ROFF 
and PREZIOSI (1994) and LIU et al. (1997) have either 
described the distributions or given confidence intervals 
for genetic parameters. Not explored was the issue of 
assessing, in the interest of cost-saving, a subsample of 
the study population for one of the variables. BURDON 
and APIOLAZA (1998) presented an ANOVA-based 
method to deal with two traits on partially overlapping 
subsamples, but it has some limits to the classification 
imbalance that can address. The objective of this study 
was to explore, through simulation, the effects of 
different subsampling intensities on the estimation of 
genetic parameters using restricted maximum likelihood 
(REML), on consistency of rankings based on Best 
Linear Unbiased Prediction (BLUP), and on estimates of 
expected response to selection. 

MATERIALS AND METHODS 

The simulation experiment addressed the full factorial 
combinations of: heritability of trait 1 (h:  = 0.1 and 
0.3), heritability of trait 2 (h; = 0.4 and 0.8), genetic 
correlation between the traits (r, = -0.6, -0.3,0,0.3 and 
0.6) and subsampling intensity of trait 2 (3 ,9 ,  15 and 30 
observations). Trait 1 was always considered with 30 
trees (100% subsampling). One hundred progeny tests 
were simulated for each combination of levels of the 
factors. The tests were assumed for simplicity to have a 
completely randomlayout, 200 families and 30 individu- 
als per family. Families were considered true half-sibs, 
with non-inbred, unrelated parents, and always a high 
number of effective paternal parents. Assuming a fully 
additive genetic model the coefficient of relationship 
was therefore %. Further assumptions were: 100% 
survival, phenotypic variance of 1 for both traits and an 
environmental correlation of 0. Even though the combi- 
nations of genetic parameters were not exhaustive, and 
we used a fixed family number and size, we covered a 
range of situations that are relevant to tree breeding (see, 
for example, BURDON 1992, CORNELNS 1994, WHITE 
1987). 

This study considered the prediction of breeding 
values for backwards (or parental) selection. Therefore, 
for each progeny test was considered a family ('sire") 
model: 

where y = 0,' y,') represents the vector of phenotypic 

observations for traits 1 and 2, X = XI e X, and Z = Z, 
e Z2 are known incidence matrices for fixed and 
random effects respectively, m = (m,' m,')' and f = Cf,' 
f,')' are vectors of unknown trait means and random 
family effects respectively, e is the vector of random 
residuals, ' is the transpose operation, and e is the 
direct sum operation. The expected value ( E )  and 
variance (V) of the model equation terms are: 

where: 
G = G,  LB I ,  is the additive genetic variance-covariance 
matrix, 

where @ denotes the direct (Kronecker) product opera- 
tion, and I ,  is an identity matrix of order N equal to the 
total number of families (200). Because we are dealing 
with standardised traits, the phenotypic variance is 1 
and as a result the genetic variances are h:and h i  and 
the genetic covariances are rR h, h2. 

R is the residual variance-covariance matrix, which 
includes environmental effects and % of the total 
genetic (co)variances. Because of the missing observa- 
tions in trait 2, R cannot be expressed as a direct 
product. For individuals with records for both traits R, 
diag { ot , o:2 }; while for individuals with records only 

2 
for trait 1, the matrix R, collapses to the scalar o,, . 

Bivariate observations with the desired variance- 
covariance matrices were obtained using Cholesky 
decomposition (JOHNSON 1987, VAN VLECK 1994). 
Subsampling was accomplished by randomly deleting 
observations of trait 2 from the complete simulated test, 
leaving the desired number of trees in each family. 
Additionally, truncation subsampling was simulated for 
a specific set of parameters. In this case, all families 
were fully assessed and ranked for trait 1 and then 15 
individuals from the top 40% of the families for that 
trait were sampled for trait 2. 

Variance and covariance components were esti- 
mated for each simulated test using REML (PATTERSON 
&THOMPSON 1971). An iterative average information 
algorithm was applied to maximise the likelihood 
function using AIREML (JOHNSON & THOMPSON 
1995). Estimates of heritability (h,2) for traits 1 and 2, 
and genetic correlation between the traits (r,) were 
calculated as: 

%ZGZ+R R %ZG 

R R 0 

%GZ 0 %G 

'I In tree breeding as opposed to animal breeding, the 'dam' 
and not the 'sire' is identified. 

Y 

E e =  

J. 

Xm 

0 
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y 

V e =  

f.. 



2 with of;and o as the among-families estimated 
ff, variance and covariance components respectively. 

For each simulated combination, the statistical 
significance of the skewness of distribution of estimates 
for a parameter i (g,, either for h'or 5 )  was tested 
following SNEDECOR and COCHRAN (1980, p.78): 

where o,?,is the population standard deviation of the n 
values of pi for a given combination of parameters, and 
crit, ,  is the tabulated critical value for a nominal proba- 
bility of a comparisonwise type-I error, a, and n degrees 
of freedom. 

Bias for each simulated combination of parameters 
and sampling was considered significant if (LN et al. 
1997): 

biasdn 
> ta,n - I  

'bias 

The effects of sampling on the prediction of breeding 
values was quantified using the correlation (rffs,) 
between breeding values for trait i predicted with a 
sample of the data (fl) and those actually simulated (A,).  

where bias is the difference between the average of the 
n individual genetic parameter estimates and the 'true' 
(simulated) parameter, n is the number of simulations 
(loo), abias is the standard deviation of the n individual 
genetic parameter estimates, and t ,  _, is Student's t 
value for a nominal probability of a comparisonwise 
type-I error a and n - 1 degrees gf freedom. 

Predicted breeding values (f ) were obtained as the 
solutions to HENDERSON'S (1984) mixed model equa- 
tions developed using the REML estimates of the 
variance components: . 

where 0. o2 and 0; are the observed covariance and fL, ' f, 
variance of predictedlbreeding values using samples, 
and the variance of simulated breeding values respec- 
tively. 

The breeding objective (H) comprised a linear 
function of the additive genetic value for traits 1 and 2 
(f, andf,). Selection was performed using an index (I), 
which included the bivariate-predicted breeding values 
for traits 1 and 2 (f, and f,). The relative economic 
values for traits 1 and 2 (w,) were assumed in three 
separate situations as 1 : 1, 2: 1 and 1 :2. Thus, 

The expected correlated (A,G,, i.e. in the single trait i )  
and direct (AG,, i.e. in the breeding objective) re- 
sponses to backwards selection on the index, i.e. 
selection of the parents based on progeny records, are 
given by (see Appendix): 

2%; 

i z - l x  x 
&'x ZR-'2 + 4 G  -' 

AG, = w, A,G, + w, A,G, 

1 - - f 

where i is the selection intensity, w is the vector of 
relative economic weights, Ti is the vector of covarian- 
ces between predicted breeding values for both traits 
and true breeding values for trait i, and S is the matrix 
of variances and covariances for predicted breeding 
values. 

RESULTS AND DISCUSSION 

Random Subsampling 

The results are presented separately for estimation of 
genetic parameters, prediction of breeding values, and 
response to selection. The general trends are fre uently 

2 4 exemplified using the parameters h ,  = 0.1, h2 = 0.8 
and r, = -0.3, which can be applicable to Pinus radiata 
D. Don progeny tests assessing growth traits and wood 
properties. Most of the results presented for response 
to selection assume relative economic weights 2: 1. 

Estimation of genetic parameters 

The different subsampling schemes were evaluated 
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considering skewness, bias, and coefficient of variation 
of the estimates relative to the simulated 'true' parame- 
ters. The distributions of the REML estimates for 
heritabilities and genetic correlations were skewed, 
especially at low subsampling intensities and extreme 
heritabilities (h :  = 0.1 or h; = 0.8). There, the likeli- 
hood approach constrained maxima to the parameter 
space tending to concentrate estimates close to the lower 
or upper bounds. Changes of sign for skewness while 
increasing subsampling intensities were commonplace. 
For example, skewness went from -0.49 to 0.42 for 
C a n d  from 0.6 to -0.21 for r^ , when subsampling 3 

6 
and 30 trees respectively (Table 1). Twenty-five out of 
80 combinations of genetic parameters and subsampling 
presented significant skewness for a = 0.05. The lowest 
subsampling intensities did not give a reliable represen- 
tation of the distribution of the estimates. 

The mean estimates of the genetic parameters varied 
slightly according to the different subsampling schemes. 
As a general trend, the magnitude of the bias of the 
estimates was higher for the lowest subsampling intensi- 
ties (3 trees). The largest deviations were for r^ , 
followed by &of traits 2 then 1. Twenty-four out of i 0  
combinations of genetic parameters and subsampling 
presented significant bias for a = 0.05. Intensifying the 
subsampling from 3 to 15 trees reduced the bias (Table 
I) ,  but further intensification had little effect on the 
magnitude of bias. 

The observed standard deviations of the estimates 
for each combination of parameters divided by the 
estimated means were considered as the 'empirical' 
coefficients of variation. As expected, an increased sub- 
sampling rate reduced the coefficient for all parameters 
estimates (Table 1). However, subsampling more than 
9 trees gave only a marginal reduction in coefficient of 
variation. 

Comparing the results of using coefficient of 
variation and percentile (data not shown), when the 

subsampling intensities were high, the trends for both 
standard error and percentile range using 15 trees were 
very close. However, the curvcs tended to differ when 
subsampling only 3 trees, showing the effects of the 
highly skewed distributions. 

Prediction of breeding values 

A central part of the breeding process is the selection of 
the parents for the next generation. The effect of 
subsampling on the prediction of breeding values was 
assessed using the correlation between breeding values 
predicted for trait 1 (f,) and 2 ( f 2 )  using a subsample of 
the observations of trait 2 and those simulated (f,, and 
A,). The magnitude of the correlations involving trait 2 
was strongly related to subsampling intensity (Fig. 1, 
Table 2). 

Sampling intensity (number of trees) 

Figure 1. Correlation between breeding values predicted 
using 3, 9, 15 and 30 observations and those simulated, 
considering r-  for h: = 0.1, h; = 0.4 and r, = -0.3 (-o-.), 

'.fit 

and r j f  for h ,  = 0.1, r, = -0.3 and h; = 0.4 (...*...) or h; = 
1 51 

0.8 (-0-). 

Table 1. Bias, coefficient of variation (CV) and skewness (Skew) using different subsampling intensities for trait 2, for 
h12 = 0.1, hZZ = 0.8 and r, = -0.3. 

Subsampling i; ii F 
intensity 
(number of 
trees) Bias CV Skew Bias CV Skew Bias CV Skew 

3 0.001 0.020 0.246 -0.016 0.020 -0.497 0.014 0.050 0.601 
9 0.000 0.020 0.249 0.008 0.012 -0.225 0.013 0.043 0.323 

15 0.000 0.020 0.253 0.006 0.010 -0.127 0.005 0.036 0.055 
3 0 0.000 0.020 0.253 -0.002 0.008 0.421 0.005 0.036 -0.216 

Tr 0.001 0.020 0.332 -0.084 0.019 -0.526 0.640 0.117 -0.398 

Tr = special case with truncation subsampling, using non-random selection of the assessed families. 



Table 2. Correlation between breeding values predicted using 3, 9, 15 and 30 observations and those simulated, 
considering all the combinations of genetic parameters, for 

rfl,fsl and rj2,fr2. 

Subsampling intensity (number of trees) 
Genetic parameters 

3 9 15 30 

The correlation r -  had a marked relationshi with 
f2f ,z  Y 

the heritability of the trait, where a higher h 2  was 
associated with a higher correlation. Thus, considering h; 

2 = 0.1 and r, = -0.3, the correlations for h, = 0.8 ex- 
ceeded those forh: = 0.4 by 0.15, 0.12, 0.09 and 0.06 
for 3, 9, 15 and 30 subsampled trees respectively (Fig. 
1). Simultaneously, a higher simulated correlation r, 
between the traits (either positive or negative) gave 
higher correlations with predicted breeding values 
(Table 2). This difference was noteworthy for the 
lowest subsampling intensity, with magnitude of up to 

2 0.15 (for 11; = 0.3, h, = 0.4, 3 subsampled trees, and r, 
= 0 and 0.6). The effect for the correlation was syrnrnet- 
ric; that is, an increase of r, in either way produced 
essentially the same increase in r- The decrease in 

f 2 f i 2  ' 
heritability of trait 1 tended to accentuate the effect of 
different r, on rf2fo (Table 2). 

Even when trait 1 was not subject to subsampling, 
the correlations r-  still rose slightly with increased 

f d r  
subsampling for trait 5, because the multivariate analysis 
increased the accuracy of prediction when including 

information from trait 2 (THOMPSON & MEYER 1986). 
However, the effect of subsampling on trait 2 was small 
compared with the results for rjlrts2 (Fig, 1, Table 2). 
The effect of including trait 2 depended on the value of 
r,; thus the highest r -  were for high r, (Table 2). In 

f 2 f i  
other words, a strong association between the traits 
contributed to more reliable rankings of parents for trait 
1 when only subsampling trait 2. In general, across all 
subsampling intensities and parameter combinations, 
r -  rangedfrom0.65 to 0.85, indicating aconsiderable 

f 2 f s i  
agreement between the selection of parents under the 
different subsampling intensities. 

Response to selection 

To study the effect of subsampling, both types of 
response are presented for each combination of genetic 
parameters as the ratio of response of a given subsamp- 
ling intensity (using 3, 9, 15 and 30 trees) over the 
response predicted using the real parameters. 

The effects of subsampling were evident in the 
estimation of direct (AG,) and correlated (A,G,) re- 
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Table 3. Effect of subsampling on the relative direct 
response to selection for economic weights 2:1, h: = 0.1, 
hi = 0.8 and a range of genetic correlations between the 
traits. 

Genetic Subsampling intensity (number of trees) 
correlation 3 9 15 3 0 

"., 
0 10 20 30 40 50 60 70 80 90 100 

Sampling intensity (number of trees) 

Figure 2. Average relative gain for d~fferent subsampling 
intensities, expressed as the ratio of response to the predicted 
direct response using the true parameters. Results presented 
for relative economic weights 2 (trait 1) and 1 (trait 2), 

2 considering h: = 0.1 and h2 = 0.4 (-.o.-), h: = 0.1 and h;= 

0.8 (...*-.), h:= 0.3 and h; = 0.4 (-o-), and h: = 0.3 and h; 

= 0.8 (-0-). 

sponses. Low subsampling intensities consistently 
depressed the predicted response compared to the case 
with true genetic parameters (Fig. 2). Direct response 
was very dependent on the heritabilities of the traits (Fig. 
2) and, for the lower subsampling intensities, on the 
genetic correlation between them (Table 3). The effect 
of genetic correlation was dependent on its magnitude 
and sign. Increasing subsampling reduces the range of 
relative direct gain between r = -0.6 and r, = 0.6. For 

2 5 
example, for h ,  = 0.1 and h2 = 0.8 the range is 0.25, 
0.20,0.13 and 0.01 for 3 ,9 ,  15 and 30 subsampled trees 
respectively (Table 3). 

For all the genetic parameter combinations, the 
average direct response achieved 90% of the expected 
response subsampling just 15 trees (Fig. 2). Neverthe- 
less, there can be lower values for combinations of low 
heritabilities and negative genetic correlations (e.g. for h: 

2 = 0.1, h, = 0.8 and r, = -0.6, Table 3). The effect of 
increasing subsampling in trait 2 reduced the difference 

in average response to selection among combinations of 
heritability. As an example, the difference between h: 

2 2 2 = 0.1, h, = 0.4 and h ,  = 0.3, h, = 0.4 changes from 
0.18 to 0.05 subsampling 3 and 15 trees respectively 
(Fig. 2). With further subsampling the difference 
converges to 0, with diminishing cost-efficiency. 

Correlated responses showed more dramatic 
changes when trait 2 was subject to subsampling, 
especially at the lowest intensity (Fig. 3). In general, 
the expected relative response was boosted for trait 1, 
with some values well over 1, while the expected 
relative response for trait 2 was depressed to less than 
0.7. Thus, even when sometimes one of the correlated 
responses was superior to the value expected using the 
true genetic parameters the total direct gain was infe- 
rior. In most of the cases correlated response A,G, was 
superior to A,G,. As with direct response, correlated 
response was dependent on heritability (especially of 
trait 2, Fig. 3) and the effect of genetic correlation was 
relevant only for low subsampling intensities. 

The effect of different relative economic weights 
was more important for lower subsampling intensities. 
Thus, the relative gain subsampling 3 trees was superior 
for the index with weights 2: I than those with 1 : 1 and 
1 :2, reflecting the influence of better genetic parameter 
estimates for trait 1 (Table 4). However, when increas- 
ing subsampling intensity the differences tend to fade 
and finally disappear when subsampling 30 trees. This 
is especially marked for high values of hZ2 (0.8), where 
using only 9 trees greatly reduces the difference (Table 

4). 

0 3 6 9 12 15 18 21 24 27 30 

Sampling intensity (number of trees) 

Figure 3. Correlated relative responses to selection, 
expressed as the ratio of response to the predicted correlated 
response, using the true parameters and relative economic 
weights 2 (trait I )  and 1 (trait 2). Correlated responses for 

2 trait 1 (...*....) and 2 (...o...) for h ,  = 0.1, 11; = 0.4 and r, = 

-0.3. Correlated responses for trait 1 (-*-) and 2 (-o-) for 
h: = 0.1, h l  = 0.8 and r, = -0.3. 



Table 4. Average relative gain for different combinations of heritabilities and economic weights, considering 3,9,15 and 
30 trees sampled for trait 2. 

Heritabilities Economic Subsampling intensity (number of trees) 
weights 

k :  h22 W , 3 9 15 30 

Truncation Subsampling 

Because of cost-saving concerns, sequential culling for 
different traits within one generation is a common 
practice in tree breeding. Firstly, all families are as- 
sessed and ranked for one trait and then a given percent 
age of the top families for that trait are sampled for the 
second one. This implies the use of non-random selec- 
tion of the families to be assessed for the second trait, 
truncating the distributions. This situation was simu- 

2 2 lated for h ,  = 0.1, h, = 0.8 and r, = -0.3, considering 
relative economic weights 2: 1. The tests were generated 
as for random subsampling, the families ranked consid- 
ering only trait 1, and then 15 individuals from the top 
40% of the families were assessed for trait 2. Finally, 
the same analyses used for random subsampling were 
applied to the data sets. 

Truncation selection of families for trait 1 led to 
larger skewness and bias for li:and r8 (Table 1). An 
extreme case is that of rg , where the estimated parameter 
averaged 0.34 rather than -0.3. When predicting breed- 
ing values the correlation between predicted and 'true' 
values was depressed to 0.62 (trait 1) and 0.37 (trait 2). 
These correlations were even inferior to those subsamp- 
ling only 3 trees (Table 2), even though the total number 
of assessed trees was higher (1200 versus 600) with the 
consequent extra cost. The effect on relative direct gain 
was an overestimate, by a factor of 1.36, compared with 
the use of the 'true' parameters. This problem was 
caused mainly because of the large bias of the genetic 
correlation estimates. On the whole, even when the 

percentage of sampled families and individuals was 
generous for tree breeding standards, truncation sub- 
sampling was by far the worst scheme simulated for this 
study. 

Final Remarks 

In general, increasing the number of individuals in- 
cluded in the analysis resulted in better parameter 
estimates and larger amounts of genetic gain. The 
lowest subsampling intensity proved to be generally 
inadequate for producing reliable estimates of genetic 
parameters, prediction of breeding values and predic- 
tions of response to selection, all of which are impor- 
tant decision making tools for a breeding program. 
Raising the number of trees subsampled was subject to 
the Law of Diminishing Returns, with little effect over 
15 trees. A potential for improved cost-efficiency is 
thus confirmed. 

Concerning the analysis tools, REML is becoming 
the preferred analysis method in forest genetics, mainly 
because its statistical properties. HUBER et al. (1994) 
already showed its superior performance for various 
forest genetic experiments. The use of this procedure 
in the estimation of genetic parameters avoided com- 
pletely the existence of out-of-bounds estimates, coping 
successfully with highly unbalanced data. 

Even when the behaviour of random subsampling 
for trait 2 was fairly consistent compared with the use 
of 100% of the data (especially using 15 trees or more 
information), there is still room for improving the 
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efficiency of  the process. CAMERON and THOMPSON 
(1986) proposed 'elliptical selection' as an alternative 
method fo r  parent-offspring relationships. This method 
concentrates the subsampling on  the extremes of  the 
distribution. I t  is a proposal worth considering for  
collateral relatives, especially if the main interest is the 
estimation of  genetic parameters, and not the prediction 
of breeding values for  the parents. Nevertheless, given 
the multipurpose function of the progeny tests (WHITE 
1987) a compromise may be  needed between the optimal 
number of  individuals for  estimating genetic parameters 
and that for  ranking the families. 

T h e  chosen subsampling intensity will depend on  
the expected additional profit derived from increased 
genetic gain. Optirnisation of subsampling will depend 
o n  cost of  assessment per individual, available family 
size, economic importance of the traits under study, 
expected gain of the subsampling scheme, scale of 
deployment of  the selected material, and time frame 
between selection and harvesting the benefits on  the 
plantations. Additionally, there could be  different 
optima for  parameter estimation, prediction of  breeding 
value and response to selection. 
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APPENDIX 

The bivariate prediction of additive genetic value of a 
family for trait i (in this case i = 1,2) has the form: 

where Pi is the average phenotypic information for trait 
i, expressed as deviation from the generalised least 
square estimation of the overall mean of that trait. The 
values of are: 

where 

and 

moreover 

(3' 
p2 2 V(P,) = -[l + (n, - 1)%h2] 

n2 

and 

where n, is the number of observations per family for 
2 trait i, o, is the phenotypic variance of trait i ,  o,, is 

the phen6typic covariance between traits i and j,'/ind 

. ou a is the additive genetic covariance between traits 
trait4 i and j. 

The bivariate predicted breeding values for traits 1 
and 2 Or, and f2) are combined into an index I. This 
index is used as a prediction of the breeding objective 
H 
which includes the additive genetic values (f, andf,) of 
the same traits as those in the index. Thus: 

where w i  are the relative economic weights of the traits. 
Expected correlated response of trait i to selection on 
index I is (VAN VLECK 1993): 

where Cov(I,f,) is the covariance between the index and 
the breeding value for trait i, and V(I) is the variance of 
the selection index. 

Considering S the matrix of predicted breeding 
values variances and covariances, Ti the vector of 
covariances between predicted breeding values for both 
traits and the true genetic values for trait i ,  and a 
selection intensity i: 

and 

Ti = 6:] 
correlated response of trait i reduces to: 

while direct response to selection is (VAN VLECK 
1993): 

AG, = w, A,G, + w, A,G, 

O A R B O R A  P U B L I S H E R S  


