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Back to Tim’'s presentation
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Fig. 1. Major components and activities of the breeding cycle of forest tree improvement
programs. Each generation of breeding begins with the formation of a selected population. Each
of three population types in the central part of the cycle (selected, breeding, base) are formed
during a given generation in the sequence shown. The infusion and production populations may
or may not be formed depending upon circumstances.

We’'ll focus on this
component

White 1987 A conceptual framework for tree
improvement programs. New Forests 4:325



Traditional genetic test

200 families, 30 trees each g
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Early screen

90 .fam

30 trees each

lies + 10 clones,




In a nutshell (and coming out of the closet)

Genetic architecture (h2, correlations)

a0

Breeder’s Equation

How long will it take?
(early screening, markers)

y=Xb+ Za+e

Linear Mixed Models

L

Genetic Trials

Selection space
(what and where can
We select from?)

Henderson 1950, 1975abc, 1977, 1984 and a few

others.
Modern, Ha!



A quick look at the effect of parameters

Genetic gain assuming a constant objective standard deviation (100) and time (1)
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Generalized Linear Mixed Models

Experimental design features?
Additive, non-additive genetic effects,
pedigrees?

Random regressions?

Germplasm from populations
with different means?
Treatments within the trials?

Plug them

here
Plug them

here

y=Xb+ Za+ e

Plug them
here

Spatially/temporally
A zillion molecular markers? correlated residuals?

Frequentist or Bayesian Church? Ecumenical? Use REML, MCMC,
INLA or other acronym to fit the model.

Multivariate? Stack up the vectors and matrices and borrow some
patience to fit the model.



Generalized Linear Mixed Models

y:Xb++e

Breeders’ main interest: estimated
genetic parameters & the genetic
worth of individuals so we can:

Deploy the best trees

Turnover generations

while maximizing genetic gain



We'll have a look at three examples

GxE: genotype-site matching for
maximum value.

Wood quality: avoid further
commoditization.

Genomic selection: we want to
believe that this time is right.

There is a constant tension between what's possible in an
evaluation and what's desirable.

What we call modern is some times very old.



GENOTYPE X ENVIRONMENT



There are two naive extremes concerning GxE:
There is none | Every site is highly interacting

One way to explore this problem is to use a
multivariate version of the linear mixed model,
considering the genetic worth of

each site as a different trait.
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Falconer 1952 The problem of environment and

selection. The American Naturalist 86:293.

Modern, Ha!
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Example: multi-environment
evaluation in other crops

Factor analytic (order 1) covariance
model to achieve convergence and
estimate 24 instead of 55 parameters
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Smith, Cullis & Thompson 2005 The analysis of crop cultivar breeding and evaluation
trials: an overview of current mixed model approaches. J Agric Sci 143: 449.

Paget, Alspach, Genet & Apiolaza 2013 Genetic variance models for the evaluation of
resistance to powdery scab (Spongospora subterranea f. sp. subterranea) from long—term
potato breeding trials. Submitted.



Even this approach is not good
enough for many large trials

Most trees do not have progeny, so we
can use a Reduced Animal Model*

+ a Factor Analytic Model

Combination developed by B.R. Cullis in
2011

*Quaas & Pollack 1980 Mixed model methodology for farm and ranch beef cattle
testing programs. J. Anim. Sci. 51:1277. Modern, Ha!



We can classify sites a posteriori based on
the correlation matrix

Dendrogram of agnes(x = dis.mat, diss =T)
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Agglomerative Coefficient = 0.93

Jefferson & Cullis 2012 Prediction of breeding
values maximizing data from trials over 76 sites.
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Genotype performance across environments

Family
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Some times we have simple explanations for GxE;
most times we don't
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Apiolaza 2012 Basic density of radiata pine in New Zealand: genetic and environmental factors. TGG 8: 87-96



Aim: avoid further commoditization of radiata pine wood by ‘fixing’ poor

corewood, which should reduce rotation length for the production of
solid wood products.

WOOD QUALITY TRAITS:
RESOLUTION



Poor wood %

Variation
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Learning from phenotypic data

Before embarking in data analysis lucubrations: What
can we see/learn from data?

Do we need high stiffness & dimensional stability (low
MFA)? Use hardwoods

When do we have maximum variability? Early in the life
of trees.

Some tools can provide large numbers of data points
per individual. Do we use all of them, a subset or a
function of them?



Ultrasonic automated x-y disc scanner

As soon as we showed our new machine to foresters and breeders they
said ‘but we don’t want to use disks, we want to use cores!’
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Acoustic velocity along the core
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Acoustic velocity along & around core

T-2-2012-02-24-1603 Speed (m/s)
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To recover spiral grain along the core

10

T-2-2012-02-24-1603

Processing the
signal differences
.l when rotating the

1 core we can
estimate spiral
grain.

82 data points
per core
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Reframing the selection process: from maximum stiffness
to meeting early thresholds
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Reframing the selection process: from maximum stiffness
to meeting early thresholds
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If we want to predict time to threshold then we can select earlier, perhaps at age 2?

Apiolaza (2009) Annals of Forest Science 66:601
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Early screen

90 .fam

30 trees each

lies + 10 clones,




Amberley Seed Orchard

Screening for wood quality the parents of one of the largest orchards in the
Southern Hemisphere
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ALL OF US WANT TO BE
GENOMIC, YEAH RIGHT



Probably most breeders
feel closer to this
cartoon by Larson.

Scary part 1: We are
expected to select trees
using thousands of
predictors (e.g. SNP).

However, some times
we do use approaches
with some similarities.

“T don’t know if this is such a wise
thing to do, George.”



Something we could be doing already

response = intercept + pred1 + pred2 + pred3 + ... + pred10000

Log (1/R) NIR spectra of 4 E. globulus wood samples
0.6

Bands arise from rotations,
0.5 vibrations of bonds in molecules
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We have sort of used markers...

New Forests
May 2002, Volume 23, Issue 3, pp 177-191

Gene flow between intrody
Eucalyptus species

Robert C. Barbour, Brad M. Potts, René E. Vaillancourt, Wayn
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Scary part: moving target
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Finding the sources of missing heritability in a yeast
Cross

Joshua S. Bloom, lan M. Ehrenreich, Wesley T. Loo, Thiy-Lan Vo Lite & Leonid Kruglyak
Affiliations | Contributions | Corresponding author

Nature (2013) | doi:10.1038/nature 11867

Received 27 June 2012 | Accepted 14 December 2012 | Published online 03 February 2013
[ e i

PDF ‘!, Citation rﬁ Reprints Q Rights & permissions Metrics

Larger populations, denser sets of markers, better models
will find’ the trait

Here we use a large cross between two yeast strains to accurately estimate different
sources of heritable variation for 46 quantitative traits, and to detect underlying loci with
high statistical power. We find that the detected loci explain nearly the entire additive
contribution to heritable variation for the traits studied. We also show that the contribution
to heritability of gene—gene interactions varies among traits, from near zero to
approximately 50 per cent. Detected two-locus interactions explain only a minority of this
contribution. These results substantially advance our understanding of the missing
heritability problem and have important implications for future studies of complex and

quantitative traits.



nrarkers = 208@; # number of markers
startMarker = 1981; # set to 1 to use all
numiter = 2080; # number of iterations
vara = 1.8/20.9;

Not so sca 'y pa t: B oot e T
analysis are doable

This code will train a model using
Bayes A for any number of markers

beg = Sys.time()

has the mean followed by the markers
cbind(1,data[,startMarker:nmarkers]);
data[,nmarkers+1];

data[,nmarkers+2];
inital values

nox

"

#H W X
"

nrarkers = nmarkers - startMarker + 1;
mean2pg = 9.5; # just an approximation
scalea = @.5°vara/(nmarkers*mean2pq); # 9.5 = (v-2)/v for v=4

size = dim(x)[2];

b = array(0.9,size);
meanb = b;

b[1] = =mean(y);

var = array(@.e,size);

# adjust y

or using ASRemI-R e

# MCMC sampling
for (iter in 1:numiter){
# sample vare
vare = ( t(ycorr)X*Xycorr )/rchisq(l,nrecords + 3);

# sample intercept
ycorr = ycorr + x[,1]*b[1];
rhs = sum(ycorr)/vare;

wgaim: Whole Genome Average Interval Mapping for QTL detection ol ek i i
using mixed models b[1] = rnor=(1,mean,sqrt(invLhs));

ycorr = ycorr - x[,1]*b[1];
This package integrates sophisticated mixed modelling methods with a whole genome PMDLLY = St DLtk

3 foni nli # sample variance for each locus
approach to detecting significant QTL in linkage maps. Argr rellog el

var[locus] = (scalea*d4+b[locus]*b[locus])/rchisq(l,4.841)

Version: 1.3-0
. : # sample effect for each locus

Depends: R (= 2.0.0), gtl, lattice e (locut/Ae 2:2150)]

: . _NO. # unadjust y for this locus
Published: 2012-09-11 ycorr = ycorr + x[,locus]*b[locus];

5 : : - s : & rhs = t(x[,locus])%*Xycorr/vare;
Author: Julian Taylor, Simon Diffey, Ari Verbyla and Brian Cullis. Ths = (x[, ocus])X*Xa{, ocus]/vare + 1.8/var[locus];
Maintainer: Julian Taylor <julian.taylor at adelaide.edu.au> SIrhied = 3 =0 et s
mean = invLhs*rhs;

i . b[locus]= rnorm(1,mean,sgrt(invLhs));
License GPL(22 #adjust y for the new \‘ralue of this locus
SystemRequirements: asreml-R 3.x ycorr = ycorr - x[,locus]*b[locus];

e : s < meanb[locus] = meanb[locus] + b[locus];
Citation: wgaim citation info , }

In views: Genetics
7 Sys.time() - beg
CRAN checks: wgaim results

meanb = meanb/numiter;
aHat = x %*X% meanb;



Markers & GxE

It makes sense to use clones
replicated across environments to

train the models

e.g. Resende, Munoz Del Valle, Acosta, Resende,
Grattapaglia & Kirst 2012 Stability of Genomic
Selection prediction models across ages and
environments.

Can we move in forestry from a piecemeal
approach to run a program (and redesign a
program) based on genomic selection?



Sales pitch has some limits

In briefly reviewing a small fraction of the
prodigious efforts to map G-P, we emphasize
the extreme entanglement of the effects of
numerous genes and of environmental
influences on phenotype. Beyond this,
organisms alter their environments, which
reciprocally affect the organisms’ own
phenotypes, as well as those of surrounding
organisms. Consequently, complete knowledge
of a genome’s loci and existing and potential
allelic variants cannot, in principle, account for
the phenotypic variation of multicellular
organisms, except under exceedingly
restrictive, unrealistically simplified genetic
and environmental conditions.

Travisano & Shaw 2012. Lost in the map. Evolution 67(2): 305-314.



In summary |

The development of new assessments (either
phenotypes or markers) will exponentially increase
available information & the size of our problems.

We’'ll reach points when solving the problem becomes
unfeasible. Options: more complex algorithms and/or
redefining the problem.

GxE: alternative models can cope with massive
multivariate approaches.

Solid wood properties: redefine the problem.



In summary ||

Markers are an odd one: IMHO a small-scale
iIntervention in the program has little use.

Large-scale intervention makes much more sense,
again IMHO, but it's also quite risky.

Training across sites (to account for GXE) may turn up
to be quite expensive unless one can rely on good
clonal coverage across sites.

Acknowledgements: John Walker, Ryogo Nakada, Clemens Altaner &
Paul McLean (wood quality), Brian Cullis, Tim McDonald & Mark Paget
(GxE).



