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Abstract This article uses the breeder’s equation, which predicts genetic gain in breeding
programs, to frame a general discussion on breeding objectives, new phenotypic techniques
for selection criteria and statistical models as applied to short rotation species. Short-
rotation breeding programs are increasingly working on wood quality traits; however, we
keep on treating them as if they were growth traits. Understanding tree-level patterns of
variation can lead to alternative strategies for evaluation, analysis and inclusion in breeding
objectives; which I describe in a pilot application in Pinus radiata in New Zealand. Finally
I discuss the relationship between the breeder’s equation and formulations of linear mixed
models, using genotype by environment interaction as example, to show the interplay
between genetic evaluation and breeding strategies. There is tension between increasing
complexity (and the implicitly promised flexibility), information recovery (as more
parameters are poorly estimated) and computational demands. The latter can be tackled
through much more computer power (a never-ending endeavor), exploiting features of the
problem or moving back to a lower complexity level.

Keywords Early screening - Genetic evaluation - Genotype by environment
interaction - Wood properties

Introduction

Genetic evaluation is central for any breeding program, as it provides information to select
the best trees, predict genetic gain and manage population structure to maximize the long-
term benefits of the program (White 1987). While the role of evaluation is simple, practical
implementation gives rise to a number of complications: we have to account for multiple
traits and environments, and the vagaries of long-term decisions. Tree breeding is not an
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isolated discipline and, besides its connections to other forestry activities, it is informed by
progress in both animal and crop breeding. Tree and crop breeding have in common the
heavy use of experimental designs and genetic evaluation based on multiple environments,
while tree and animal breeding have in common the large numbers of genotypes under
testing. Three points of distinction are that (1) tree breeding deals with much longer-lived
and large organisms, which involves (2) a clear distinction between selection criteria and
objective traits and (3) testing often focuses on single individuals rather than on the
operational unit (a stand).

This article focuses on advances in genetic evaluation—in a wide sense, considering both
statistical models and new phenotypic techniques for selection criteria—although with a
distinctive ‘Kiwi flavor’ and an emphasis on the work developed at the University of Can-
terbury. There are two reasons for this; firstly, it is the work with which I have most famil-
iarity; secondly, we have been working in new approaches to very early wood quality
assessment that could be less familiar to many readers. Some of this work is flowing into the
current breeding strategy of the New Zealand Radiata Pine Breeding Company (NZRPBC),
while other is still in the evaluation stage and, in some cases, it is speculative at best.

It is convenient to frame the discussion of research targeting genetic evaluation on terms
of predicted genetic gain per year, which is estimated with the breeder’s equation as the
product of four factors: accuracy of prediction, selection intensity, additive genetic vari-
ation and the inverse of generation interval (described in many places, for example Van
Vleck et al. 1987). Traditionally the calculation is presented in its univariate, mass-
selection form:

ih’a,

4G =—— (1))
where i is selection intensity, 4° heritability for the single trait under selection, 6, phe-
notypic variance and L generation interval. This form is useful if one were to start a
breeding program, selecting plus trees based on their own phenotypic records for a single
trait. However, advanced-generation, modern programs tend to rely on Best Linear
Unbiased Prediction (BLUP) breeding values for multiple traits—reflecting selection
efforts for quantity and quality characteristics—as well as recognizing that performance in
multiple sites can be modeled as multiple traits (going back to Falconer 1952). In this case,
a more useful form of the equation is:

4G = (2))
where ryy is the correlation between the index 7 used for selection and the breeding
objective H (accuracy), and oy is the standard deviation of the breeding objective. The
following discussion will cover three areas: breeding objectives, corewood quality traits,
and multiple environments as multiple traits, referring back to effects on the components of
Eq. [2].

Breeding objectives and uncertainty
Most operational breeding programs target multiple traits that, if the aim is maximizing

commercial value, requires a formal definition of the breeding objective. This involves
both identifying traits that have an effect on profit and their relative economic weights.
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Following Borralho et al.’s (1993) work on breeding objectives for Eucalyptus globulus
there have been several articles defining objectives for short rotation species, with the
largest number for radiata pine, sometimes showing large discrepancies in the estimated
values (e.g., Chambers and Borralho 1999; Apiolaza and Garrick 2001b; Ivkovic et al.
2006). There are two terms in Eq. [2] that involve the economic weights: ;5 and oy (see
appendix of Apiolaza and Garrick 2001b for details on their calculation); thus, disagree-
ments in estimated values may result not only in different selected genotypes, but in
different predicted genetic gains as well.

There is a fascinating distinction between research on genetic parameters and economic
weights. In the case of genetic parameters, it is always possible to invest more on testing to
obtain better estimates; in contrast, for breeding objectives and economic weights,
uncertainty 40-50 years in the future (1 breeding cycle + 1 rotation) cannot be reduced
substantially. If, on top of this, we include shifting environmental conditions due to, for
example, climate change, the prospect of deriving ‘good’ economic weights is daunting.

An alternative to using point-estimates of economic values—often obtained from bio-
economic models with large numbers of assumptions—could be the use of ‘robust
selection’, generating broad scenarios of economic weights using Monte Carlo simulation
and selecting the genotypes that achieve a high value under a mix of conditions. As an
example, Evison and Apiolaza (2013) used unpublished economic weights for the
NZRPBC breeding program as the mean for the simulation, while a number of published
alternatives were used to define the variability of the simulations. Using this approach, it is
possible to select genotypes that perform well on average and are resilient to variability of
economic weights; that is, that perform well over a broad set of economic circumstances.
In a related problem, Apiolaza and Alzamora (2013) used portfolio analysis to deal with
performance instability at the deployment level—due to either GXE interaction or changing
economic circumstances—making explicit trade-offs between gain and stability/predict-
ability. This approach could also be used for breeding purposes.

Targeting corewood in short rotation softwoods

As discussed in the introduction, a characteristic feature of tree breeding is the marked
distinction between objective traits—which affect profit, are often expensive to assess and
observed at rotation age—and selection criteria, which are correlated with objective and
are hopefully easier, cheaper and faster to assess. In the case of radiata pine in New
Zealand, objective traits like volume, wood stiffness or branching are on average valued at
rotation age (average 28 years), while selection criteria like dbh, acoustic velocity and
basic density are on average assessed at 8 years. Selection indices targeting the objective
require genetic parameters for selection criteria at early age, objective traits at rotation age
and correlations linking criteria and traits.

The New Zealand Radiata Pine Breeding program started in the 1950s with an emphasis
on tree growth and form. Successive selection efforts extended to nodality (later aban-
doned) and disease resistance (e.g. Dothistroma sp.). All these traits could be easily
assessed in large numbers of individuals. In the late 1960s and early 1970s it started to
become clear that radiata pine was a poor wood quality species, particularly in the first ten
rings (often named corewood). Initially much work was developed on basic density,
considered at the time as the fundamental wood property, as it displayed strong correlations
with other wood properties, and is relatively easy to assess and highly heritable. Never-
theless—at least from a solid wood perspective—modulus of elasticity (MoE) and
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dimensional stability have larger effects on the performance (and price) of the end-pro-
ducts. The relationship between basic density and MoE changes with time (Chauhan and
Walker 2006), showing strong associations in outerwood (wood following the first ten
rings) but poor association in corewood (Apiolaza 2009). Unfortunately, tree selection for
breeding purposes is done at age eight in radiata pine, when trees contain mostly corewood.

Our research group has proposed a change of philosophy concerning the evaluation of
wood quality, letting go of the idea of predicting quality at rotation age (Apiolaza 2009,
Apiolaza et al. 2011a, b). Most of the poor wood quality problem in short rotation soft-
woods relates to corewood, which combined with the gradual increase of quality with age
makes targeting rotation age (and therefore juvenile-mature correlations) unnecessary. The
problem can then be framed as predicting corewood quality as early as possible, for which
we have developed tools and techniques that scale to thousands of genotypes (Chauhan
et al. 2013). These range from low-cost and fast devices to assess longitudinal shrinkage in
wood samples or splitting tests to estimate growth-strain to purpose-built acoustic velocity
and resonance tools developed by the University of Canterbury.

Reframing the problem also affects the breeding objective, as the trait we are breeding
for (corewood quality) is expressed much earlier. Another related issue is how to integrate
very early screening in the breeding strategy. Despite our efforts, we have not scaled
evaluation beyond 3,000 trees (6,000 samples), which is enough for establishing basic
genetic parameters, but not sufficient to screen our breeding population. Instead, we
suggest targeting screening the deployment populations (particularly clonal ones), which
are much smaller than breeding populations and already present superior growth and
adaptation. Alternatively, breeders could target elite breeding populations, in which
assessing 5-10 ramets/genotype would prove very valuable. This process could be
expanded to tackle non-key traits; e.g. heartwood/resin content using NIR to provide a
comprehensive coverage of wood properties.

Probably the biggest problem when working with wood quality is how expensive is
assessment, which leads to very small sample sizes reducing selection intensity in Eq. [2]
and potentially reduced accuracy of selection. Table 1 shows a simplified view of the
number of samples required to estimate parameters; most of the wood quality literature
deals with tens of samples and, in some cases, as little as a single tree.

The unsuitability of small sample sizes of large trees to support breeding for wood
properties led us to propose an alternative: measure small trees—even seedlings—as they
are much cheaper and faster to assess. This makes some key assumptions: (1) poor quality
trees by age 2 will tend to have poor quality corewood and take longer to produce
acceptable timber outerwood; (2) the price discount between the lowest framing and
appearance grades, and reject material (~50 %) is far greater than the difference with
premium grades (~ 10 % for engineering and finishing); and (3) there is no need to delay
selection because the poorest wood is at the center of the tree, with a gradual improvement
with age. That is, if corewood meets a quality threshold the outer rings will also meet it,
and therefore there is no need to worry about age—age correlations for wood quality. This
approach makes a conscious trade-off between reduced accuracy of selection, and higher
selection intensity and lower generation interval in Eq. [2].

Very early screening of wood quality is both a change of selection criteria and a change
of objective traits, as we move to two classes of products: industrial (low value) and ‘good
enough’ for structural and appearance purposes. In New Zealand, at the average rotation of
28 years, about 50 % of the volume of radiata pine is low quality (and value) corewood
(Van Wyk 1990; Cown 1992 and Gaunt 1998). ‘Fixing’ corewood has the greatest financial
benefit in short rotation softwoods as it upgrades product quality and potentially allows for
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Table 1 Number of samples

required to obtain a good esti- Estimated parameter Number of samples
mate parameters
Mean Tens
Variance Hundreds
Correlation Thousands

shorter rotations. We have strong evidence for these assumptions, and the NZRPBC has
established two ‘sister trials’ that will be grown until 8 years to compare the results from
very early screening with traditional selection techniques.

The reader might be wondering why do we worry about early screening genotypes that
have already been selected for the breeding and deployment program considering growth,
form and basic density. Figure 1 provides a good answer, plotting the predicted breeding
values for the parents of a radiata pine clonal seed orchard, considering wood stiffness
(MoE in GPa) in the X-axis, longitudinal shrinkage (a measure of dimensional stability, in
percentage) in the Y-axis and basic density (in kg m ) as circle area, based on a genetic
trial using 2-year old seedlings. Selection of the orchard parents focused on wood quantity
but ignored solid wood quality.

Considering only MoE and shrinkage, the best parents would be at the bottom-right of
the graph (high stiffness, low shrinkage), while the worst parents would be at the top-left
(low stiffness, high shrinkage). Some of the most abundant parents in the orchard, chosen
because adequate or high density, are among the worst performing parents for wood
quality. Using this type of very early screening trial we can further rogue deployment
populations for solid wood quality, without waiting for the typical selection age.

In parallel to studying very early screening, our research group has developed high-
resolution acoustic tools, including a disk and a core scanner. The main drivers for this
effort were to improve our understanding of within-tree variation, to improve the link
between very early screening and overall tree performance, and to convince breeders and
end-users that once a quality threshold is achieved wood quality does not deteriorate. These
tools can provide assessments every few mm, producing large amounts of data, which is
mostly useless from a selection viewpoint. SilviScan—an X-ray diffraction/densitometry
tool for increment cores—also generates similar datasets providing excellent research data,
but it is overkill for breeding purposes. As researchers many times we become fascinated
by high-resolution data, which due to time and cost restrictions can be obtained for very
small samples, often targeting only our best genetic material. We have to be careful to
extend conclusions from non-random, potentially biased samples to our overall breeding
populations.

Multiple environments as multiple traits

Until last century most genetic evaluations considered a univariate genetic evaluation,
where phenotype would be modeled as a function of site, within-site experimental design
features and family structure. On terms of methodology, breeders moved from ANOVA to
BLP (e.g. White and Hodge 1989) to BLUP (e.g. Borralho 1995) and increasing software
sophistication permitted fitting heterogeneous residuals.

Falconer (1952) posited that the expression of a trait in multiple environments could be
considered as multiple traits. This view permits treating the range of analyses for multiple
environment trials as a continuum from a univariate approach assuming compound
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Fig. 1 Predicted breeding values for wood properties for parents of a radiata pine clonal seed orchard

symmetry (i.e. homogeneous variances and correlation) to an unstructured multivariate
model (i.e. heterogeneous variances and correlations), affecting the accuracy of the pre-
dictions (rz in Eq. [2]). In a univariate approach we predict a single value across envi-
ronments, which is adjusted by site differences; in contrast, in a multivariate approach we
predict breeding values for each environment. The latter is consistent with treating envi-
ronments as fixed effects in univariate analyses.

This expansion of analytic options has relied on the use of linear mixed models, which
permit (1) accounting for sampling and randomization processes in progeny trials, and (2)
modeling the covariance structures of the random effects (see Smith et al. 2005 for a
review), in many cases relying on highly optimized software like ASReml (Gilmour et al.
2002). Using a multivariate approach often offers worthwhile insights on both degree of
genetic control and across-site stability; however, increasing the number of environments
(n) creates statistical and computational problems, as the number of covariance compo-
nents to be estimated is n (n + 1), so there is a decreasing amount of data for each
component (Table 2).

Often one can reduce the number of estimated parameters in multivariate analyses by
exploiting features of the problem. For example, in the case of longitudinal analyses (when
each tree is assessed multiple times at different ages; e.g. for height or ring-level wood
properties) the order of the measurements creates patterns of variability, which in some
cases—Ilike an autoregressive process—require less than half of the parameters compared
to the original unstructured genetic covariance matrix (e.g. Apiolaza and Garrick 2001a).

In the case of multiple environments some patterns are obvious; for example, residuals
in one environment are independent of residuals in another one, as a tree can only be in a
single site. A similar logic applies to experimental design features like replicates and plots.
This makes blocked identity matrices (using a direct sum or product operation) the obvious
choice for the covariance matrices of residuals and within-site factors. The situation is
more complex when modeling genetic effects, as there is no obvious pattern to exploit in
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Table 2 The number of vari-

. Number of Number of (co)variance
ance components to be estimated .
. R . environments components
in a multivariate linear model
treating n different environments
as different trait is n (n + 1) 3
10

10 55

20 210

50 1,275

the covariance structure. A relatively common approach used during the last decade has
been to model genetic effects with a factor analytic (FA) decomposition (Smith et al. 2001,
Thompson et al. 2003). An example of successful application is the genetic evaluation for
some Australian crops (e.g. Kelly et al. 2007) and some tree breeding analyses (e.g. Costa e
Silva et al. 2006; Hardner et al. 2010). Nevertheless, as previously pointed out, tree
breeding evaluates many more genotypes than crop breeding and even using an FA
decomposition of the genetic effects turns to be computationally too expensive. At this
point it is possible to borrow an older approach from animal breeding: the reduced animal
model (RAM, Quaas and Pollak 1980; Blair and Pollak 1984). RAM is useful when there is
a large proportion of individuals that do not have their own progeny, so their individual
breeding values are a function of their parental values and their own assessment. In 2011
Brian Cullis proposed to combine RAM and FA to produce a computationally feasible
approach for multivariate tree breeding evaluation (Jefferson and Cullis 2012). This model
is used for the annual NZRPBC genetic evaluation.

Breeders test genetic material in multiple environments and analyze the results with
multivariate models because we suspect genotypes interact with (at least some of) the
environments; that is, they display Genotype by Environment interaction (GXE). One
extreme assumption when considering GXE interaction is that there is none whatsoever, so
testing in any site will produce pretty much the same ranking. This is a tempting
assumption because, if true, a breeder can run very cheap breeding and deployment pro-
grams. This was the default position for over 15 years in New Zealand, since the early
1990s. The other extreme assumption is that every environment is interacting signifi-
cantly—rankings are not stable across any environments—and we require as many
breeding and deployment programs as environments. This will likely make breeding
financially unfeasible. Therefore, a practical solution will sit in between the two extremes,
which makes necessary to collapse the results of a multivariate evaluation to a manageable
number of environments. The current genetic evaluation of radiata pine in New Zealand
uses over 70 environments, which are then collapsed using a modified version of cluster
analysis. The number of breeding regions and the covariance structure used when col-
lapsing sites into regions will affect both the accuracy of selection and selection intensity
in Eq. [2]. At the moment, the resulting groups in New Zealand are being considered from
the deployment point of view, but there is still a single breeding strategy. Explaining the
patterns of interaction is still open to interpretation for several traits. For example, there are
relatively clear latitudinal and altitudinal trends (most likely temperature is the underlying
variable) for basic density (Apiolaza 2012). However, the situation for growth traits is, in
general, much more complex and work by McDonald (2009) and Raymond (2011) most
likely does not have environmental information at the right resolution to provide definitive
answers. In addition, poor genetic connectedness between trials makes large-scale
grouping of trials very difficult.
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Final remarks

Breeding programs are sustainable only if they continue producing and, more importantly,
deploying genetic gain. [ have reviewed a number of changes to the methodologies used in
genetic evaluation and the techniques to generate abundant phenotypic data for wood
properties, relying on the breeder’s equation to connect their effects.

When combining the implementation of breeding objectives involving multiple traits,
the feasibility of the assessment of several wood quality traits and treating multiple sites as
multiple traits we end up with large numbers of observations: around 80 sites for dbh, 20
sites for density and quality traits (stiffness, dimensional stability) in 2-3 sites and non-key
traits in a similar number. Throw in a combination of half-sibs, full-sibs and clones in the
evaluation, subsampling of traits, etc. and we have big system of equations to be solved.

Breeders need to maintain operational simplicity on the face of this statistical com-
plexity. Large numbers of environments require collapsing into a much smaller number of
breeding regions; repeated assessments of wood properties provide insight on the changes
of wood quality with age, but we still want a single optimal selection age; models of the
economic effects of breeding have to be simplified for implementation on the breeding
program. That is, research allows exploring the complexity of trees, but we have to extract
simple rules that can be translated into superior material deployed in plantations.

Despite all the progress, one of the big problems faced currently by breeding organi-
zations is to demonstrate their ‘value proposition’ to industry members. That is, how much
better off is industry by investing in breeding? At a basic level we often struggle with the
way we conduct genetic testing, using single-tree plots (because of statistical consider-
ations) but propagating specific families or clones at the stand-level. We know that
superiority expressed at the individual-tree level has an imperfect correlation with stand-
level performance (e.g. Vergara et al. 2004) but, particularly in New Zealand, there is little
information on the strength of that correlation.

Some companies in New Zealand want to include genetic gain in their forest estate
valuation. However, valuation experts will only consider growth and yield inventory plots
as a valuation standard. For all the sophistication of new methodologies we have to still
take care of genetic gain trials; seed mixes tend to be close to useless to demonstrate
realized gain. Forest valuators will only take inventory plots representing the material
being deployed.
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