

"The future is already here — it's just not very evenly distributed", William Gibson

Very primitive statistical models (only phenotypic data)

Advanced statistical models (phenotypic+genomic data)

The genetic evaluation system of radiata pine in New Zealand

Luis A. Apiolaza

School of Forestry, University of Canterbury, Christchurch, New Zealand Luis.Apiolaza@canterbury.ac.nz — http://apiolaza.net

"Explanation of all my difficulties"

Clearly there has been progress

but

Has it been enough for 50 years?

How far from our potential?

As breeders, our **genetic evaluation system** is the main tool we use to understand the world

Have an effect on our conclusions

Genotypes (what)

3,000 parents under testing

325,000+ progeny in trials

Multiple experimental designs

Multiple mating designs (OP, CP, clonal)

Where (with data already)

82 trials

Techniques & models (how)

Two extreme naive models for genetic evaluation:

Univariate analysis, homogeneous variance, equal correlation between all sites

Generic understanding of GxE interaction

Ideally our model would be in between

Multivariate analysis, unstructured heterogeneous variances, all sites highly interacting with different correlations

Every site is highly interacting

Techniques & models (how)

Plant breeding

Animal breeding

Emphasis on experimental design (including spatial trends)

Few genotypes under testing

Large number of genotypes under testing

Tree breeding is special

This creates 2 big problems in tree breeding

(Remember that gold standard is single-stage evaluations)

We have too many traits

Factor analytic models

We have too many genotypes

Reduced animal models

We use both **simultaneously** in the New Zealand Radiata Pine evaluation.

Therefore we can run a singlestage evaluation

Number of **G** parameters to estimate

Reduced Animal Model*

Makes a distinction between trees with progeny (roughly 3,000 in our problem) and trees without progeny (>300,000), greatly reducing the size of the problem.

 ${\bf A}_{\rm pp}^{-1}$ is diagonal for parents, ignores Mendelian sampling for non-parents, produces breeding values only for parents. If required, model can be modified to obtain forward selections, by expanding ${\bf A}_{\rm pp}$

On top of that, the NZRPBC uses a Factor Analytic structure to model the reduced animal model**.

^{*}Pollak and Quaas (1980)

^{**}Cullis, Smith, Jefferson & Thompson 2013. Implementation strategy for RPBC breeding values incorporating GxE

(dis)connectedness

Expt

Jefferson & Cullis 2012. Prediction of breeding values maximizing data from trials over 76 sites.

(dis)connectedness

- Lack of/poor connectedness between trials is our largest problem in genetic evaluation.
- It means we **can't** compare some genotypes to each other.
- It also means that many genotypes have been tested under a small subset of environments
- One of the priorities of the RPBC breeding plan is to expand coverage and connectedness. We have ramped up trial installation for the last 5 years.

Additive genetic correlation matrix

HOW DO WE EXPLAIN THESE CORRELATIONS?

Some times we have simple explanations for GxE; for example, scale effect of temperature on basic

Apiolaza 2012 Basic density of radiata pine in New Zealand: genetic and environmental factors. TGG 8: 87-96

In contrast, for growth we don't know the drivers of GxE. Several attempts:

McDonald & Apiolaza 2008-9 Raymond 2010 Ivkovic et al 2012-14 Cullis & Jefferson 2013-14

One **probable** cause: we have soil and climate data at the wrong scale (both in space and time)

On top of that, climate will be different in our next rotation

And, even worse, very poor resolution for soils

In summary, we have no first-hand, reliable information on environmental variables that drive GxE interaction for growth

An understanding of deployment environments permits adjusting our approach to risk

Apiolaza, L.A. and Alzamora, R.M. 2013. Building deployment portfolios for genotypes under performance instability. Silva Fennica 47(1): 901

Final remarks

- Today we can run a single-stage multivariate national evaluation (with Factor Analytic & Reduced Animal models) using ASReml-R.
- We are not yet able to explain the environmental factors driving GxE for growth.
- Probable cause: wrong scale environmental data.
- One of our priorities should be to invest in high resolution descriptions of the environment for our best, better-connected trials (moving from G to E).

Thanks to

- The New Zealand Radiata Pine Breeding Company and its members, who have supported my work since 2006, both with data and funding
- Paul Jefferson & Brian Cullis for early access to the results of the latest genetic evaluation.
- The conference organizers for kindly inviting me to present today.